Advertisement

Development of an acetanilide/benzoic acid eutectic phase change material based thermal energy storage unit for a passive water heating system

  • Khushboo PurohitEmail author
  • V V S Murty
  • R C Dixit
  • Atul Sharma
Article
  • 29 Downloads

Abstract

In the present work, two organic phase change materials (PCMs) are used to develop a new eutectic PCM for sharp melting point with high latent heat of fusion. Optimized eutectic can be suitable for a passive water heating system (PWHS). The binary eutectic PCMs consisting of different compositions of acetanilide and benzoic acid are prepared and optimized at a composition of 30:70 by weight percentage. Optimized samples are characterized by using differential scanning calorimetry (DSC), Fourier transform infrared spectrophotometry and field-emission scanning electron microscopy. The results of DSC showed that melting temperature and latent heat of the optimized eutectic PCM is found to be \(75.56{^{\circ }}\hbox {C}\) and \(193.56\,\hbox {J}\,\hbox {g}^{-1}\). A negligible change in melting temperature and latent heat of fusion of the optimized eutectic based PCM after 100 accelerated heating and cooling cycles is observed. The prepared eutectic PCM is employed as a thermal energy storage (TES) system for PWHS. The experimental results of a eutectic PCM based TES system for the PWHS show that the use of eutectic helps in enhancing the maximum utility of solar energy during off-shine hours.

Keywords

Phase change material (PCM) eutectic differential scanning calorimetry (DSC) thermal energy storage (TES) passive water heating system (PWHS) 

Notes

Acknowledgements

The authors are greatly thankful to Suresh Silawat, Govt. Holkar Science College, Indore for providing the laboratory facilities. The authors are also thankful to Dharam Buddhi, S.G.V. University, Jaipur, V Ganeshan, Mukul Gupta, M Awasthi N P Lalla, Uday Deshpandey and S Bhardwaj UGC-DAE-Consortium, Kinney Pandey, IIT Indore for their support in characterization of the samples and useful discussions.

References

  1. 1.
    Swapna L C, Deepika B, Bhaskaran P, Nair S V and Subramanian K R V 2014 Bull. Mater. Sci. 37 685CrossRefGoogle Scholar
  2. 2.
    Sarı A, Biçer A, Karaipekli A, Alkan C and Karadag A 2010 Sol. Energy Mater. Sol. Cells 94 1711CrossRefGoogle Scholar
  3. 3.
    Raoux S and Wuttig (eds) 2009 Phase change materials (NY: Springer)Google Scholar
  4. 4.
    Farid M M, Khudhair A M, Razack S A K and Al-Hallaj S 2004 Energy Convers. Manage. 45 1597CrossRefGoogle Scholar
  5. 5.
    Tyagi V V and Buddhi D 2007 Renew. Sust. Energy Rev. 11 1146CrossRefGoogle Scholar
  6. 6.
    Kuznik F, David D, Johannes K and Roux J J 2011 Renew. Sust. Energy Rev. 15 379CrossRefGoogle Scholar
  7. 7.
    Sharma A, Tyagi V V, Chen C R and Buddhi D 2009 Renew. Sust. Energy Rev. 13 318CrossRefGoogle Scholar
  8. 8.
    Fan L W and Khodadadi J M 2011 Renew. Sust. Energy Rev. 15 24CrossRefGoogle Scholar
  9. 9.
    Murat K and Khamid M 2007 Renew. Sust. Energy Rev. 11 1913CrossRefGoogle Scholar
  10. 10.
    Pielichowska K and Pielichowski K 2014 Prog. Mater. Sci. 65 67CrossRefGoogle Scholar
  11. 11.
    Sari A and Kaygusuz K 2002 Sol. Energy 72 493CrossRefGoogle Scholar
  12. 12.
    Sari A and Karaipekli A 2009 Sol. Energy Mater. Sol. Cells 93 571CrossRefGoogle Scholar
  13. 13.
    Shilei L, Neng Z and Feng G H 2006 Energy Build. 38 708CrossRefGoogle Scholar
  14. 14.
    Wang Y, Xia T D, Feng H X and Zhang H 2011 Renew. Energy 36 1814CrossRefGoogle Scholar
  15. 15.
    Shukla A, Buddhi D and Sawhney R 2008 Renew. Energy 33 2606CrossRefGoogle Scholar
  16. 16.
    Zuo J G, Li W Z and Weng L D 2011 Appl. Therm. Eng. 31 1352CrossRefGoogle Scholar
  17. 17.
    Zeng J L, Cao Z, Yang D W, Xu F, Sun L X, Zhang L et al 2009 J. Therm. Anal. Calorim. 95 501CrossRefGoogle Scholar
  18. 18.
    Jebasingh B E 2016 J. Energy Storage 5 70CrossRefGoogle Scholar
  19. 19.
    Fauzi H, Metselaar H S C, Mahila T M I, Silakhori M and Nur H 2013 Appl. Therm. Eng. 60 261CrossRefGoogle Scholar
  20. 20.
    Bansal N K and Buddhi D 1992 Sol. Energy 33 235Google Scholar
  21. 21.
    Tayeb A M 1993 Energy Convers. Manage. 34 243CrossRefGoogle Scholar
  22. 22.
    Patel J H, Qureshi M N and Darji P H 2018 Materials Today: Proc. 5 1490Google Scholar
  23. 23.
    Chaurasia P B L 2000 Proceedings of 8th International conference on thermal energy storage, Stuttgart, GermanyGoogle Scholar
  24. 24.
    Bajnoczy G, Palffy E G, Szolnoki L and Prepostoffy E 2007 Period. Polytecinica Chem. Eng. 51 3CrossRefGoogle Scholar
  25. 25.
    Kurklu A, Ozmerzi A and Bilgin S 2002 Renew. Energy 26 391CrossRefGoogle Scholar
  26. 26.
    Baran G and Sari A 2003 Energy Convers. Manage. 44 3227CrossRefGoogle Scholar
  27. 27.
    Sharma A, Pradhan N and Kumar B 2003 IEA ECESIA Annex 17 Advanced thermal energy storage through phase change materials and chemical reactions—feasibility studies and demonstration projects, 4th workshop, Indore, India, March 21 109Google Scholar
  28. 28.
    Mettawee E B S and Assassa G M R 2006 Energy 31 2958CrossRefGoogle Scholar
  29. 29.
    Hassana M M and Beliveau Y 2008 Build. Environ. 43 804CrossRefGoogle Scholar
  30. 30.
    Mazman M, Cabeza L F, Mehling H, Nogues M, Evliya H and Paksoy H O 2009 Renew. Energy 34 1639CrossRefGoogle Scholar
  31. 31.
    Marka S K, Nagavolu C, Vadali V S S, Srikanth V, Kota B S R and Baldev R 2018 Bull. Mater. Sci. 41 62CrossRefGoogle Scholar
  32. 32.
    Li X, Liu M, Lin D and Yongming J 2015 Proced. Eng. 121 1341CrossRefGoogle Scholar
  33. 33.
    Tang X, Zhu B, Xu M, Zhang W, Yang Z, Zhang Y et al 2015 Energy Build. 109 353CrossRefGoogle Scholar
  34. 34.
    Narayanan S S et al 2016 Resource-Efficient Tech.Google Scholar
  35. 35.
    Shahbaz K, Alnashef I M, Lin R J T, Hashim M A, Mjalli F S and Farid M M 2016 Sol. Energy Mater. Sol. Cells 155 147CrossRefGoogle Scholar
  36. 36.
    Fauzi H, Metselaar H S C, Mahlia T M I and Silakhori M 2014 Appl. Therm. Eng. 66 328CrossRefGoogle Scholar
  37. 37.
    Meenakshi Reddy R, Nallusamy N, Hariprasad T, Hemachandra Reddy K and Ramachandra Reddy G 2012 Int. J. Renew. Energ. Tech. 3 11CrossRefGoogle Scholar
  38. 38.
    Jeong S G, Lee J H, Seo J and Kim S 2014 Int. J. Heat Mass Transfer 71 245CrossRefGoogle Scholar
  39. 39.
    Jie H and Liu S 2017 RSC Adv. 7 22170CrossRefGoogle Scholar
  40. 40.
    Yang H, Memon S A, Bao X, Cui H and Li D 2017 Materials. (Basel) 10 391CrossRefGoogle Scholar
  41. 41.
    Cabeza L F, Castell A, Barreneche C, de Gracia A and Fernández A I 2011 Renew. Sust. Energy Rev. 15 1675CrossRefGoogle Scholar
  42. 42.
    Zalba B, Marín J M, Cabeza L F and Mehling H 2003 Appl. Therm. Eng. 23 251CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Kim D, Jung J, Kim Y, Lee M, Seo J and Khan S B 2016 Int. J. Heat Mass Transfer 95 735CrossRefGoogle Scholar
  45. 45.
    Sharma N K, Tiwari P K and Sood Y R 2012 Renew. Sust. Energy Rev. 16 933CrossRefGoogle Scholar
  46. 46.
    Pincemin S, Olives R, Py X and Christ M 2008 Sol. Energy Mater. Sol. Cells 92 603CrossRefGoogle Scholar
  47. 47.
    Das S, Murugadoss A, Sarkar S and Chattopadhyay A 2008 J. Chem. Sci. 6 547CrossRefGoogle Scholar
  48. 48.
    Stepanian S G, Reva I D, Radchenko E D and Sheina G G 1996 J. Vib. Spectrosc. 11 123CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Govt. Holkar Science CollegeD.A.V.V.IndoreIndia
  2. 2.Non-Conventional Energy LaboratoryRajiv Gandhi Institute of Petroleum TechnologyJais AmethiIndia

Personalised recommendations