Preparation of Cu nanoparticles by a pulsed wire evaporation process for conductive ink applications

  • Dong-Jin Lee
  • Fan-Long Jin
  • Soo-Jin ParkEmail author


In the present study, Cu colloidal nanoparticles and nanopowders were successfully synthesized by a pulsed wire evaporation process. Cu-based nano-inks were prepared by mixing Cu nanoparticles with acrylic resin and solvent. Cu nanoparticles with a particle size of < 20 nm were uniformly dispersed in ethylene glycol. The Cu nanopowders were successfully coated with an organic solvent composed of a hydrocarbon compound. This organic coating effectively inhibited the oxidation of Cu nanopowders. In addition, the stability of dispersion of Cu nanoparticles in the inks was improved by a ball-milling process. The electrical conductivity of the prepared Cu nano-inks was 10–28 \(\upmu \)S cm\(^{-1}\) for 20–40 wt% of Cu.


Cu nanoparticles nanopowders electrical conductivity 



This research was supported by Traditional Culture Convergence Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant number 2018M3C1B5052283) and Korea Evaluation Institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083586, Development of petroleum based graphite fibers with ultra-high thermal conductivity] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).


  1. 1.
    Cankurtaran H, Karadayi E B and Sungur S 2016 Prog. Org. Coat. 98 6CrossRefGoogle Scholar
  2. 2.
    Dong Y, Li X, Liu S, Zhu Q, Zhang M, Li J G et al 2016 Thin Solid Films 616 635CrossRefGoogle Scholar
  3. 3.
    Graves J E, Sugden M, Litchfield R E, Hutt D A, Mason T J and Cobley A J 2016 Ultrason. Sonochem. 29 428CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Wu L, Guo X, Jung Y G and Zhang J 2016 Comput. Mater. Sci. 125 105CrossRefGoogle Scholar
  5. 5.
    Gadea C, Marani D and Esposito V 2017 J. Phys. Chem. Solids 101 10CrossRefGoogle Scholar
  6. 6.
    Zhu L, Jin F L and Park S J 2012 Bull. Korean Chem. Soc. 33 2513CrossRefGoogle Scholar
  7. 7.
    Ammosova L, Jiang Y, Suvanto M and Pakkanen T A 2017 Appl. Surf. Sci. 401 353CrossRefGoogle Scholar
  8. 8.
    Lee S, Choi D, Piao H and Son Y 2016 Microelectron. Eng. 163 98CrossRefGoogle Scholar
  9. 9.
    Zhang W, Bi E, Li M and Gao L 2016 Colloids Surf. A 490 232Google Scholar
  10. 10.
    Jiang W, Jin F L and Park S J 2012 J. Ind. Eng. Chem. 18 594CrossRefGoogle Scholar
  11. 11.
    Ida K, Tomonari M, Sugiyama Y, Chujyo Y, Tokunaga T, Yonezawa T et al 2012 Thin Solid Films 520 2789CrossRefGoogle Scholar
  12. 12.
    Liu Q, Li L, Cai N, Saidi W A and Zhou G 2014 Surf. Sci. 627 75CrossRefGoogle Scholar
  13. 13.
    Li W and Chen M 2014 Appl. Surf. Sci. 290 240CrossRefGoogle Scholar
  14. 14.
    Jeong S, Woo K, Kim D, Lim S, Kim J S, Shin H et al 2008 Adv. Funct. Mater. 18 679CrossRefGoogle Scholar
  15. 15.
    Li J, Wang G and Zhou G 2016 Surf. Sci. 649 39CrossRefGoogle Scholar
  16. 16.
    Pospiech D, Jehnichen D, Starke S, Müller F, Bünker T, Wollenberg A et al 2017 Appl. Surf. Sci. 399 205CrossRefGoogle Scholar
  17. 17.
    Zhang C, Cai J, Lv P, Zhang Y, Xia H and Guan Q 2017 J. Alloys Compd. 697 96CrossRefGoogle Scholar
  18. 18.
    Lou T, Qiang H and Chen Z 2017 Talanta 163 132CrossRefGoogle Scholar
  19. 19.
    Liu Q, Zhou D, Yamamoto Y, Kuruda K and Okido M 2012 Trans. Nonferrous Met. Soc. China 22 2991CrossRefGoogle Scholar
  20. 20.
    Wen Y, Huang W, Wang B, Fan J, Gao Z and Yin L 2012 Mater. Sci. Eng. B 177 619CrossRefGoogle Scholar
  21. 21.
    Kapoor S, Palit D K and Mukherjee T 2002 Chem. Phys. Lett. 355 383CrossRefGoogle Scholar
  22. 22.
    Qiu S, Dong J and Chen G 1999 J. Colloid Interface Sci. 216 230CrossRefGoogle Scholar
  23. 23.
    Ke T, Le Y, Wang J, Chu G W, Chen J F and Shao L 2010 Mater. Lett. 64 1717CrossRefGoogle Scholar
  24. 24.
    Haque M M, Cho D and Lee C S 2013 Thin Solid Films 536 32CrossRefGoogle Scholar
  25. 25.
    Yu W, Xie H, Chen L, Li Y and Zhang C 2009 Nanoscale Res. Lett. 4 465CrossRefGoogle Scholar
  26. 26.
    Galo C T and Ricardo O C 1998 Mater. Res. Bull. 33 1599CrossRefGoogle Scholar
  27. 27.
    Gain A K and Zhang L 2014 J. Alloys Compd. 617 779CrossRefGoogle Scholar
  28. 28.
    Lee D J, Choi H S, Jin F L and Park S J 2015 J. Ind. Eng. Chem. 27 322CrossRefGoogle Scholar
  29. 29.
    Krasovskii P V, Samokhin A V, Fadeev A A and Alexeev N V 2016 Adv. Powder Technol. 27 1669CrossRefGoogle Scholar
  30. 30.
    Lee D J, Choi H S, Jin F L and Park S J 2015 J. Ind. Eng. Chem. 25 5CrossRefGoogle Scholar
  31. 31.
    Hedberg Y S, Pradhan S, Cappellini F, Karlsson M E, Blomberg E, Karlssonc H L et al 2016 Electrochim. Acta 212 360CrossRefGoogle Scholar
  32. 32.
    Neyertz C A, Gallo A D, Ulla M A and Zamaro J M 2016 Surf. Coat. Technol. 285 262CrossRefGoogle Scholar
  33. 33.
    Li W, Li W, Wei J, Tan J and Chen M 2014 Mater. Chem. Phys. 146 82CrossRefGoogle Scholar
  34. 34.
    Nariki S, Sakai N and Murakami M 2001 Phys. C 357360 811CrossRefGoogle Scholar
  35. 35.
    Kim D G, Min K H, Chang S Y, Oh S T, Lee C H and Kim Y D 2005 Mater. Sci. Eng. A 399 326Google Scholar
  36. 36.
    Tseng C C, Lin Y, Liu T Y, Nian Y Y, Wan M W and Ger M D 2013 Thin Solid Films 536 81CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Nano Technology Inc.Daedeok-GuRepublic of Korea
  2. 2.Department of Polymer Materials, Jilin Institute of Chemical TechnologyJilin CityPeople’s Republic of China
  3. 3.Department of ChemistryInha UniversityNam-Gu, IncheonRepublic of Korea

Personalised recommendations