Skip to main content
Log in

Investigating structural features of Ba and Zr co-substituted strontium bismuth tantalate thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Structural (crystal and microstructure), chemical and electronic states, and ferroelectric and electrical features of Ba and Zr co-substituted strontium bismuth tantalate (SBT) were probed in this study. Distinctly, Ba and Zr were substituted for Ta and Sr sites of \(\hbox {Sr}_{0.8}\hbox {Bi}_{2.2}\hbox {Ta}_{2}\hbox {O}_{9 }\) in the form of \(\hbox {Sr}_{0.8-x}\hbox {Ba}_{x}\hbox {Bi}_{2.2}\hbox {Ta}_{2-y}\hbox {Zr}_{y}\hbox {O}_{9}\). To investigate the impact of the co-substitution on the crystal structure, microstructure, ferroelectric and electrical properties, \(\hbox {Sr}_{0.8-x}\hbox {Ba}_{x}\hbox {Bi}_{2.2}\hbox {Ta}_{2-y}\hbox {Zr}_{y}\hbox {O}_{9}\) thin films were deposited on \(\hbox {Pt/Ti/}\hbox {SiO}_{2}/\hbox {Si}(100)\) wafers by sol–gel spin by coating method. Crystal structure, microstructure, chemical and electronic states, ferroelectric, capacitance and leakage current characteristics of the films were studied to investigate potential for one transistor type ferroelectric random access memories (1T-type FeRAMs). Successful substitutions up to 10 mol% lead to reduction of double remanent polarization \((2P_{\mathrm{r}})\) to \(10.26\,\upmu \hbox {C\,cm}^{-2}\), and dielectric constant \((\varepsilon _{\mathrm{r}})\) to 135. These values demonstrate that successful co-substitution of limited Ba and Zr in SBT with stable crystal structure has the ability to decrease \(P_{\mathrm{r}}\) and \(\varepsilon _{\mathrm{r}}\) values of the ferroelectric material which can be a candidate gate to be utilized in ferroelectric field-effect transistors (FeFETs) for 1T-type FeRAM applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mikolajick T, Slesazeck S, Park M H and Schroeder U 2018 MRS Bull. 43 340

    Article  CAS  Google Scholar 

  2. Medwal R, Gupta S, Pavunny S P, Katiyar R K, Thomas R and Katiyar R S 2018 J. Mater. Sci. 53 4274

    Article  CAS  Google Scholar 

  3. Fengler F P G, Nigon R, Muralt P, Grimley E D, Sang X H, Sessi V et al 2018 Adv. Electron. Mater. 4 1700547

    Article  Google Scholar 

  4. Shin H W and Son Y J 2018 Electron. Mater. Lett. 14 59

    Article  CAS  Google Scholar 

  5. Sugandha and Jha A K 2013 Ceram. Int. 39 9397

  6. Sugandha and Jha A K 2013 Ferroelectrics 447 136

    Article  CAS  Google Scholar 

  7. Ma T P and Han J P 2002 IEEE Electron. Device Lett. 23 386

    Article  CAS  Google Scholar 

  8. Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2012 J. Electroceram. 28 158

    Article  CAS  Google Scholar 

  9. Yan K, Takahashi M and Sakai S 2012 Appl. Phys. A: Mater. 108 835

    Article  CAS  Google Scholar 

  10. Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2009 Mater. Sci. Eng. B 161 130

    Article  CAS  Google Scholar 

  11. Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2010 Microelectron. Eng. 87 2173

    Article  CAS  Google Scholar 

  12. Shimakawa Y, Kubo Y, Nakagawa Y, Kamiyama T, Asano H and Izumi F 1999 Appl. Phys. Lett. 74 1904

    Article  CAS  Google Scholar 

  13. Atsuki T, Soyama N, Yonezawa T and Ogi K 1995 Jpn. J. Appl. Phys. 1 34 5096

    Article  Google Scholar 

  14. Noguchi T, Hase T and Miyasaka Y 1996 Jpn. J. Appl. Phys. 1 35 4900

    Article  Google Scholar 

  15. Li Y B, Zhang S, Fei W D, Gan Z H and Mhaisalkar S 2007 Adv. Appl. Ceram. 106 180

    Article  CAS  Google Scholar 

  16. Kannan B R and Venkataraman B H 2014 J. Mater. Sci.: Mater. Electron. 25 4943

  17. Golosov D A, Zavadski S M, Kolos V V and Turtsevich A S 2016 Phys. Solid State 58 50

    Article  CAS  Google Scholar 

  18. Kannan B R and Venkataraman B H 2016 Ferroelectrics 493 110

    Article  CAS  Google Scholar 

  19. Akazawa H and Ando H 2010 J. Appl. Phys. 108 083704

    Article  Google Scholar 

  20. Bozgeyik M S, Cross J S, Ishiwara H and Shinozaki K 2009 Jpn. J. Appl. Phys. 48 061403

    Article  Google Scholar 

  21. Miller S L and Mcwhorter P J 1992 J. Appl. Phys. 72 5999

    Article  CAS  Google Scholar 

  22. Chen H D, Udayakumar K R, Gaskey C J and Cross L E 1997 Integr. Ferroelectr. 15 89

    Article  CAS  Google Scholar 

  23. Scott J F, Melnick B M, McMillan L D, de Araujo C A P and Azuma M 1993 Ferroelectrics 150 209

    Article  Google Scholar 

  24. Kang S K and Ishiwara H 2002 Jpn. J. Appl. Phys. 1 41 6899

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges Japan Society for the Promotion of Science (JSPS) and Scientific and Technological Research Council of Turkey (TUBITAK). This work was partially supported by the Scientific Research Project Fund of Kahramanmaras Sutcu Imam University, Turkey, under the Project Number of 2013/4-25 M. The author is grateful to Professors H Ishiwara, K Shinozaki and J S Cross for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet S Bozgeyik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozgeyik, M.S. Investigating structural features of Ba and Zr co-substituted strontium bismuth tantalate thin films. Bull Mater Sci 42, 47 (2019). https://doi.org/10.1007/s12034-018-1723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1723-y

Keywords

Navigation