Skip to main content

Tunable optical and dielectric properties of polymeric composite materials based on magneso-silicate

Abstract

Magneso-silicate (MgSi) as an inorganic ion exchange material was synthesized by a precipitation technique. Then, the MgSi was impregnated into polyacrylamide acrylic acid and its composites (Poly) by condensation polymerization. To study the effect of \(\upgamma \)-radiation, the polyacrylamide acrylic acid and its MgSi samples were synthesized using \(\upgamma \)-irradiating systems at 25, 65 and 90 kGy. The variations in the radiation dose and amorphous structure were altered and confirmed by X-ray diffraction (XRD). Moreover, the absorbance and band-gap energy were enhanced by inserting MgSi into the polymeric composites (Poly). Furthermore, variations in temperature with dielectric constant, dielectric loss and conductivity of the samples at various frequencies from 100, 500, 1000, 2000 to 4000 Hz have been explained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Majhi M, Choudhary R and Maji P 2015 Bull. Mater. Sci. 38 1195

    Article  CAS  Google Scholar 

  2. Karadağ E, Topaç F, Kundakci S H and Üzüm Ö B 2014 Bull. Mater. Sci. 37 1637

    Article  Google Scholar 

  3. Murali K R and Rao D R 1981 Thin Solid Films 86 283

    Article  CAS  Google Scholar 

  4. Raghuvanshi S K, Ahmad B, Siddhartha Srivastava A K, Krishna J B M and Wahab M A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 271 44

    Article  CAS  Google Scholar 

  5. Burland D M, Miller R D and Walsh C A 1994 Chem. Rev. 94 31

    Article  CAS  Google Scholar 

  6. Angiolini L, Benelli T, Giorgini L and Salatelli E 2006 Polymer 47 1875

    Article  CAS  Google Scholar 

  7. Rosseinsky D R and Mortimer R J 2001 Adv. Mater. 13 783

    Article  CAS  Google Scholar 

  8. Grote J G, Zetts J S, Nelson R L, Hopkins F K, Dalton L R, Zhang C et al 2001 Opt. Eng. 40 2464

  9. Liu C-L and Chen W-C 2011 Polym. Chem. 2 2169

    Article  CAS  Google Scholar 

  10. Katz E and Willner I 2003 J. Am. Chem. Soc. 125 6803

    Article  CAS  Google Scholar 

  11. Özdemir T, Güngör A, Akbay I K, Uzun H and Babucçuoglu Y 2017 Radiat. Phys. Chem. 144 248

    Article  Google Scholar 

  12. Alekseev V, Baranovsky V, Vedenov A, Velichko A, Zaytzeva L, Kovalenko A et al 1991 Bull. Mater. Sci. 14 257

  13. Lawton E, Bueche A and Balwit J 1953 Nature 172 76

    Article  CAS  Google Scholar 

  14. Ambika M R, Nagaiah N, Harish V, Lokanath N K, Sridhar M A, Renukappa N M 2017 Radiat. Phys. Chem. 130 351

  15. Sharma T, Aggarwal S, Kumar S, Mittal V K, Kalsi P C and Manchanda V K 2007 J. Mater. Sci. 42 1127

    Article  CAS  Google Scholar 

  16. Moez A A, Aly S S and Elshaer Y H 2012 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93 203

  17. Nagarale R K, Shin W and Singh P K 2010 Polym. Chem. 1 388

    Article  CAS  Google Scholar 

  18. Armstrong B L, Campbell A A, Gutowska A and Song L 2002 Polymer/ceramic composites (Google Patents)

  19. Rao Y and Wong C 2004 J. Appl. Polym. Sci. 92 2228

    Article  CAS  Google Scholar 

  20. Rao Y, Ogitani S, Kohl P and Wong C 2002 J. Appl. Polym. Sci. 83 1084

    Article  CAS  Google Scholar 

  21. Newnham R E 1986 Ferroelectrics 68 1

    Article  CAS  Google Scholar 

  22. Kuo D-H, Chang C-C, Su T-Y, Wang W-K and Lin B-Y 2001 J. Eur. Ceram. Soc. 21 1171

    Article  CAS  Google Scholar 

  23. Qingbo Z, Liying Z and Yuzhen S 1993 Radiat. Phys. Chem. 42 73

    Article  Google Scholar 

  24. Hassan M F and Yusof S Z M 2014 Microsc. Res. 2 30

    Article  Google Scholar 

  25. Kangwansupamonkon W, Jitbunpot W and Kiatkamjornwong S 2010 Polym. Degrad. Stab. 95 1894

    Article  CAS  Google Scholar 

  26. Hassan A M, Zakaria E S, Ibrahim A B, Abass M R and Abou-Mesalam M M 2018 Int. J. Innov. Res. Growth 6 66

  27. Manuel Stephan A and Nahm K S 2006 Polymer 47 5952

    Article  Google Scholar 

  28. Zhang T, Vandeperre L J and Cheeseman C R 2014 Cem. Concr. Res. 65 8

    Article  CAS  Google Scholar 

  29. Kato T, Kinoshita Y, Nishiyama N, Wada K, Zhou C and Irifune T 2014 Phys. Earth Planet. Inter. 232 26

    Article  CAS  Google Scholar 

  30. Abdel-Galil E, El-Deen G S, El-Aryan Y and Khalil M 2016 Russ. J. Appl. Chem. 89 467

    Article  CAS  Google Scholar 

  31. Li D, Wang M, Yang C, Wang J and Ren G 2012 Chem. Pharm. Bull. 60 995

    Article  CAS  Google Scholar 

  32. Deng Y, Dixon J B, White G N, Loeppert R H and Juo A S 2006 Colloids Surf. A Physicochem. Eng. Asp. 281 82

    Article  CAS  Google Scholar 

  33. Fournier J A, Johnson C J, Wolke C T, Weddle G H, Wolk A B and Johnson M A 2014 Science 344 1009

    Article  CAS  Google Scholar 

  34. Rashidzadeh A, Olad A, Salari D and Reyhanitabar A 2014 J. Polym. Res. 21 344

    Article  Google Scholar 

  35. Xiao-Hong L, Hong-Ling C, Rui-Zhou Z and Xian-Zhou Z 2015 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137 321

  36. Rashad M M, Elseman A M and Hassan A M 2016 Optik-Int. J. Light Electron Opt. 127 9775

    Article  CAS  Google Scholar 

  37. Luo B, Wang X, Wang Y and Li L 2014 J. Mater. Chem. A 2 510

    Article  CAS  Google Scholar 

  38. Shalabney A, George J, Hutchison J, Pupillo G, Genet C and Ebbesen T W 2015 Nat. Commun. 6 5981

    Article  CAS  Google Scholar 

  39. Abou-Mesalam M M, Abass M R, Abdel-Wahab M A, Zakaria E S, Hassan A M and Khalil H F 2016 Desalination Water Treat. 57 25757

    Article  CAS  Google Scholar 

  40. Madejová J 2003 Vib. Spectrosc. 31 1

    Article  Google Scholar 

  41. Anwar A, Elfiky D, Ramadan A M and Hassan G M 2017 Radiat. Phys. Chem. 134 14

    Article  CAS  Google Scholar 

  42. Maryanski M, Zastavker Y and Gore J 1996 Phys. Med. Biol. 41 2705

    Article  CAS  Google Scholar 

  43. Elseman A, Shalan A, Rashad M and Hassan A 2017 Mater. Sci. Semicond. Process. 66 176

    Article  CAS  Google Scholar 

  44. Elseman A M, Shalan A E, Rashad M M, Hassan A M, Ibrahim N M and Nassar A M 2017 J. Phys. Org. Chem. 30 e3639

    Article  Google Scholar 

  45. Rashad M, Hassan A, Nassar A, Ibrahim N and Mourtada A 2014 Appl. Phys. A 117 877

    Article  CAS  Google Scholar 

  46. Thayer G D 1974 Radio Sci. 9 803

    Article  Google Scholar 

  47. Chia L H L, Chua P H, Hon Y S and Lee E 1986 Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. 27 207

  48. Jonscher A K 1977 Nature 267 673

    Article  CAS  Google Scholar 

  49. Aras L and Baysal B M 1984 J. Polym. Sci. Part B Polym. Phys. 22 1453

  50. Andreuccetti D, Bini M, Ignesti A, Olmi R, Rubino N and Vanni R A 1988 IEEE Trans. Biomed. Eng. 35 275

    Article  CAS  Google Scholar 

  51. Pant H, Patra M, Negi S, Bhatia A, Vadera S and Kumar N 2006 Bull. Mater. Sci. 29 379

    Article  CAS  Google Scholar 

  52. Song H-S, Yang C and Liu D-B 2012 J. Funct. Mater. 9 25

    Google Scholar 

  53. Zikry A 2008 Int. J. Polym. Mater. 57 383

    Article  CAS  Google Scholar 

  54. Manouras T and Vamvakaki M 2017 Polym. Chem. 8 74

    Article  CAS  Google Scholar 

  55. Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57

  56. Nassar A M, Abo Zeid E F, Elseman A M and Alotaibi N F 2018 New J. Chem. 42 1387

    Article  CAS  Google Scholar 

  57. Rao V and Rao B S 1991 Acta Polym. 42 379

    Article  CAS  Google Scholar 

  58. Blythe A R and Bloor D 2005 Electrical properties of polymers (United Kingdom: University Press)

  59. Maji P, Pande P and Choudhary R 2015 Bull. Mater. Sci. 38 417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to Central Metallurgical Research and Development Institute, Egypt for its financial support to pursue this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Elseman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abou-Mesalam, M.M., Abass, M.R., Ibrahim, A.B. et al. Tunable optical and dielectric properties of polymeric composite materials based on magneso-silicate. Bull Mater Sci 42, 31 (2019). https://doi.org/10.1007/s12034-018-1721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1721-0

Keywords

  • Magneso-silicate
  • polymeric composites
  • dielectric properties
  • radiation