Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Manifestation of exo-cyclic aromaticity in triangular heterocyclic \(\hbox {B}_{2}\hbox {F}_{2}\)X systems (X \(=\) O, S, Se, NH)

Abstract

Aromaticity is an important concept in chemistry which extends over a wide range of molecular systems and imparts unique features to the molecules possessing it. In the present work, novel heteroatomic molecular systems are proposed which demonstrate non-conventional aromaticity where the molecules accomplish the aromatic sextet and hence stabilization through the conjugation of \(\uppi \)-electrons from exo-cyclic substituents. A considerable \(\upsigma \)-aromaticity is also observed which does not involve the exo-cyclic atoms. At first, the stability of these molecular systems is theoretically ascertained through various density functional theory and ab-initio calculations along with the energy decomposition analysis, T1 diagnostic run, estimation of ring strain energy and highest occupied molecular orbital–lowest unoccupied molecular orbital gap which indicate towards the viability of these molecular systems. Then, a detailed study of aromaticity with the aid of different computational probes such as nucleus-independent chemical shift (NICS), dissected canonical molecular orbital-NICS analysis, multi-centre bond index (MCI), adaptive natural density partitioning and theoretical tools such as aromatic stabilization energy based on a fully ab-initio approach are performed which establish unique exo-cyclic aromaticity in these systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Faraday M 1825 Phil. Trans. R. Soc. Lond. 115 440

  2. 2.

    Kekulé A 1865 Bull. Soc. Chim. Paris 3 98

  3. 3.

    Kekulé A 1866 Ann. Chem. Pharm. 137 129

  4. 4.

    Garratt P J 1997 Aromaticity (New York: John Wiley & Sons)

  5. 5.

    Minkin V I, Glukhotsev M N and Simkin B Y 1994 Aromaticity and antiaromaticity: electronic and structural aspects (New York: John Wiley & Sons Inc.)

  6. 6.

    Bickelhaupt F and de Wolf W H 1988 Recl. Trav. Chim. Pays-Bas 107 459

  7. 7.

    Kraakman P A, Valk J M, Niederländer H A G, Brouwer D B E, Bickelhaupt F M, de Wolf W H et al 1990 J. Am. Chem. Soc. 112 6638

  8. 8.

    Schleyer P V R and Jiao H 1996 J. Pure Appl. Chem. 68 209

  9. 9.

    Schleyer P V R, Jiao H, Hommes N J R V E, Malkin V G and Malkina O L 1997 J. Am. Chem. Soc. 119 12669

  10. 10.

    Poranne G P and Stranger A 1994 Magnetic and structural aspects (New York: Wiley)

  11. 11.

    Homray M, Misra A and Chattaraj P K 2017 Curr. Org. Chem. 21 2699

  12. 12.

    Katritzky A R 2004 Chem. Rev. 104 2125

  13. 13.

    Aihara J I 1982 J. Pure Appl. Chem. 54 1115

  14. 14.

    Graovac A, Gutman L and Trinajstic 1977 Topological approach to the chemistry of conjugated molecules (Berlin: Springer)

  15. 15.

    Nyulaszi L 2001Chem. Rev. 101 1229

  16. 16.

    Minkin V I and Minyaev R M 2001Chem. Rev. 101 1247

  17. 17.

    Katritzky A R, Jug K and Oniciu D C 2001 Chem. Rev. 101 1421

  18. 18.

    Li X, Kuznetsov A, Zhang H, Boldyrev A I and Wang L 2001 Science 291 859

  19. 19.

    Kuznetsov A E, Birch K A, Boldyrev A I, Li X, Zhai H and Wang L 2003 Science 300 622

  20. 20.

    Boldyrev A I and Wang L 2005 Chem. Rev. 105 3716

  21. 21.

    Paul S and Misra A 2011 Inorg. Chem. 50 3234

  22. 22.

    Chattaraj P K, Roy D R and Duley S 2008 Chem. Phys. Lett. 460 382

  23. 23.

    Huckel E 1931 Z. Phys. 70 204

  24. 24.

    Hehre W J, Radom L, Schleyer P V R and Pople J A 1986 Ab initio molecular orbital theory (New York: Wiley)

  25. 25.

    Xie Y, Schaefer III H F and Thrasher J S 1991 J. Mol. Struct. Theochem. 234 247

  26. 26.

    Shaik S, Shurki A, Danovich D and Hiberty P C 1997 J. Mol. Struct. Theochem. 39 155

  27. 27.

    Krygowski T M and Cyraski M K 2001 Chem. Rev. 101 1385

  28. 28.

    Poater J, Duran M, Solà M and Silvi B 2005 Chem. Rev. 105 3911

  29. 29.

    Cyraski M K 2005 Chem. Rev. 105 3773

  30. 30.

    Matito E, Duran M and Solà M 2005 J. Chem. Phys. 122 014109

  31. 31.

    Bultinck P, Ponec R and Van Damme S 2005 J. Phys. Org. Chem. 18 706

  32. 32.

    Feixas F, Matito E, Poater J and Solà M 2008 J. Comput. Chem. 29 1543

  33. 33.

    Roy D R, Bultinck P, Subramanium V and Chattaraj P K 2008 J. Mol. Struct. 854 35

  34. 34.

    Feixas F, Matito E, Poater J and Solà M 2015 Chem. Soc. Rev. 44 6434

  35. 35.

    Misra A, Klein D J and Morikawa T 2009 J. Phys. Chem. A 113 1151

  36. 36.

    Clar E 1970 The aromatic sextet (New York: Wiley & Sons)

  37. 37.

    Misra A, Schmalz T G and Klein D J 2009 J. Chem. Inf. Model. 49 2670

  38. 38.

    Bhattacharya D, Panda A, Misra A and Klein D J 2014 J. Phys. Chem. A 118 4325

  39. 39.

    Gund P 1972 J. Chem. Educ. 49 100

  40. 40.

    Goswami T, Homray M, Paul S, Bhattacharya D and Misra A 2017 Phys. Chem. Chem. Phys. 19 11744

  41. 41.

    Gutowsky H S and McCall D W 1953 J. Phys. Chem. 21 279

  42. 42.

    Onak T P, Landesman H, Williams R E and Shapiro I 1959 Paper presented to the Division of Inorganic Chemistry, 135th National Meeting of the American Chemical Society, Boston, Mass., 1959

  43. 43.

    Cotton F A and Wilkinson G 1966 Advanced inorganic chemistry (London: Interscience) p 256

  44. 44.

    Olah G A, Mo Y K and Halpern Y 1972 J. Am. Chem. Soc. 94 3551

  45. 45.

    Ziegler T and Rauk A 1977 Theor. Chim. Acta 46 1

  46. 46.

    Bader R F W 1990 Atoms in molecules: a quantum theory (Oxford, UK: Oxford University Press)

  47. 47.

    Schleyer P V R, Maerke C, Dransfeld A, Jiao H and Hommes N J R V E 1996 J. Am. Chem. Soc. 118 6317

  48. 48.

    Heine T, Schleyer P V R, Corminboeuf C, Seifert G, Reviakine R and Weber J 2003 J. Phys. Chem. A 107 6470

  49. 49.

    Zubarev D Y and Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207

  50. 50.

    Paul S, Goswami T and Misra A 2015 AIP Adv. 5 107211

  51. 51.

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, Revision B.01 (Wallingford, CT: Gaussian Inc.)

  52. 52.

    Amsterdam Density Functional (Theoretical Chemistry, Vrije Universitiet, Amsterdam, The Netherlands, http://www.scm.com)

  53. 53.

    AIMAll (version 17.01.25), Todd A K 2017 TK Gristmill Software, Overland Park KS, USA

  54. 54.

    Lu T and Chen F 2012 J. Comput. Chem. 33 580

  55. 55.

    DFT Code, OPENMX, is available at http://www.openmx-square.org under the GNU General Public License

  56. 56.

    Pinter B, Fievez T, Bickelhaupt F M, Geerlings P and De Proft F 2012 Phys. Chem. Chem. Phys. 14 9846

  57. 57.

    Lee J T and Taylor P 1989 Int. J. Quantum Chem. 36 199

  58. 58.

    Bauzá A, Quiñonero D, Deyà P M and Frontera A 2012 Chem. Phys. Lett. 536 165

  59. 59.

    Cox J D and Pilcher G 1970 Thermochemistry of organic and organometallic compounds (London: Academic)

  60. 60.

    Benson S W 1976 Thermochemical kinetics (New York: Wiley)

  61. 61.

    Inagaki S, Ishitani Y and Kakefu T 1994 J. Am. Chem. Soc. 116 13

  62. 62.

    Dewar M J S 1984 J. Am. Chem. Soc. 106 669

  63. 63.

    Aihara J 1999 J. Phys. Chem. A 103 7487

  64. 64.

    Aihara J 1999 Theor. Chem. Acc. 102 134

  65. 65.

    Aihara J 1999 Phys. Chem. Chem. Phys. 1 227

  66. 66.

    Parr R G and Zhou Z 1993 Acc. Chem. Res. 26 256

  67. 67.

    Liu X, Schmalz T G and Klien D J 1992 Chem. Phys. Lett. 188 550

  68. 68.

    Haddon R C and Fukunaga T 1980 Tetrahedron Lett. 21 1191

  69. 69.

    Pearson R G 1973 Hard and soft acids and bases (Stroudsburg, PA: Dowden, Hutchinson and Ross)

  70. 70.

    Manolopoulos D E, May J C and Down S E 1991 Chem. Phys. Lett. 181 105

  71. 71.

    Hoffmann R, Schleyer P V R and Schaefer H F 2008 Angew. Chem. Int. Ed. 47 7164

  72. 72.

    Katrizky A, Barczymski P, Musumarra G, Pisano D and Szafran M 1989 J. Am. Chem. Soc. 111 7

  73. 73.

    Schleyer P V R, Manoharan M, Jiao H and Stahl F 2001 Org. Lett. 3 3643

  74. 74.

    Chen Z, Wannere C S, Corminboeuf C, Puchta R and Schleyer P V R 2005 Chem. Rev. 105 3842

  75. 75.

    London F 1937 J. Phys. Radium 8 397

  76. 76.

    Cheeseman J R, Trucks G W, Keith T A and Frisch M J 1996 J. Chem. Phys. 104 5497

  77. 77.

    Schreckenbach G and Ziegler T 1995 J. Phys. Chem. 99 606

  78. 78.

    Schreckenbach G and Ziegler T 1998 Theor. Chem. Acc. 99 71

  79. 79.

    Simkin B Y, Minkin V I and Glukhotsev M N 1993 Adv. Heterocycl. Chem. 56 304

  80. 80.

    Foster J P and Weinhold F 1980 J. Am. Chem. Soc. 102 7211

  81. 81.

    Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899

  82. 82.

    Katrizky A, Barczymski P, Musumarra G, Pisano D and Szafran M 1984 J. Am. Chem. Soc. 111 7

  83. 83.

    Radhakrishnan S, Anathakrishnan S J and Somanathan N 2011 Bull. Mater. Sci. 34 713

  84. 84.

    Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847

Download references

Acknowledgements

The financial support from CSIR, India, is thankfully acknowledged.

Author information

Correspondence to Anirban Misra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1164 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homray, M., Paul, S. & Misra, A. Manifestation of exo-cyclic aromaticity in triangular heterocyclic \(\hbox {B}_{2}\hbox {F}_{2}\)X systems (X \(=\) O, S, Se, NH). Bull Mater Sci 42, 46 (2019). https://doi.org/10.1007/s12034-018-1718-8

Download citation

Keywords

  • Aromaticity
  • exo-cyclic
  • nucleus-independent chemical shift
  • multi-centre bond index
  • aromatic stabilization energy