Temperature dependence of electrical properties in \(\hbox {In/Cu}_{{2}}\hbox {ZnSnTe}_{{4}}\hbox {/Si/Ag diodes}\)

  • H H Gullu
  • D E YildizEmail author
  • Ö Bayrakli Sürücü
  • M Terlemezoglu
  • M Parlak


\(\hbox {Cu}_{{2}}\hbox {ZnSnTe}_{4}\) (CZTTe) thin films with In metal contact were deposited by thermal evaporation on monocrystalline n-type Si wafers with Ag ohmic contact to investigate the device characteristics of an In/CZTTe/Si/Ag diode. The variation in electrical characteristics of the diode was analysed by carrying out current–voltage (IV) measurements in the temperature range of 220–360 K. The forward bias IV behaviour was modelled according to the thermionic emission (TE) theory to obtain main diode parameters. In addition, the experimental data were detailed by taking into account the presence of an interfacial layer and possible dominant current transport mechanisms were studied under analysis of ideality factor, n. Strong effects of temperature were observed on zero-bias barrier height \((\Phi _{\mathrm{B}0} )\) and n values due to barrier height inhomogeneity at the interface. The anomaly observed in the analysis of TE was modelled by Gaussian distribution (GD) of barrier heights with 0.844 eV mean barrier height and 0.132 V standard deviation. According to the Tung’s theoretical approach, a linear correlation between \(\Phi _{\mathrm{B}0} \) and n cannot be satisfied, and thus the modified Richardson plot was used to determine Richardson constant \((A^{*})\). As a result, \(A^{*}\) was calculated approximately as \(120.6\hbox { A cm}^{-2}~\hbox {K}^{-2}\) very close to the theoretical value for n-Si. In addition, the effects of series resistance \((R_{\mathrm{s}} )\) by estimating from Cheng’s function and density of surface states \((N_{\mathrm{ss}} )\) by taking the bias dependence of effective barrier height, were discussed.


Temperature dependence IV characteristics barrier inhomogeneity Gaussian distribution series resistance 


  1. 1.
    Adachi S 2015 Earth-abundant materials for solar cells (Chichester: Wiley)CrossRefGoogle Scholar
  2. 2.
    Vigil-Galán O, Courel M, Andrade-Arvizu J A, Sánchez Y, Espíndola-Rodríguez M, Saucedo E et al 2015 J. Mater. Sci. Mater. Electron. 26 5562CrossRefGoogle Scholar
  3. 3.
    Terlemezoglu M, Bayrakli O, Gullu H H, Colakoglu T, Yildiz D E and Parlak M 2017 J. Mater. Sci. Mater. Electron. 29 5264CrossRefGoogle Scholar
  4. 4.
    Gullu H H, Terlemezoglu M, Bayrakli O, Yildiz D E and Parlak M 2018 Can. J. Phys.  96 816CrossRefGoogle Scholar
  5. 5.
    Matsushita H, Maeda T, Katsui A and Takizawa T 2000 J. Cryst. Growth 208 416CrossRefGoogle Scholar
  6. 6.
    Wei K and Nolas G S 2015 J. Solid State Chem. 226 215CrossRefGoogle Scholar
  7. 7.
    Matsushita H, Ichikawa T and Katsui A 2005 J. Mater. Sci. 40 2003CrossRefGoogle Scholar
  8. 8.
    Pareek D, Balasubramaniam K R and Sharma P 2016 RSC Adv. 6 68754CrossRefGoogle Scholar
  9. 9.
    Sevik C and Cagin T 2009 Appl. Phys. Lett. 95 112105CrossRefGoogle Scholar
  10. 10.
    Bayrakli O, Terlemezoglu M, Gullu H H and Parlak M 2017 Mater. Res. Express 4 086411CrossRefGoogle Scholar
  11. 11.
    Sze S M and Ng K K 2007 Physics of semiconductor devices (USA: Wiley)Google Scholar
  12. 12.
    Schroder D K 2005 Semiconductor material and device characterization (New Jersey: Wiley)CrossRefGoogle Scholar
  13. 13.
    Ozer M, Yildiz D E, Altindal S and Bulbul M M 2007 Solid State Electron. 51 941CrossRefGoogle Scholar
  14. 14.
    Yildiz D E, Altindal S and Kanbur H 2008 J. Appl. Phys. 103 124502CrossRefGoogle Scholar
  15. 15.
    Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589CrossRefGoogle Scholar
  16. 16.
    Rhoderick E H and Williams R H 1988 Metal-semiconductor contacts (Oxford: Clarendon)Google Scholar
  17. 17.
    Harrabi Z, Jomni S, Beji L and Bouazizi A 2010 Physica B 405 3745CrossRefGoogle Scholar
  18. 18.
    Yigiterol F, Gullu H H, Bayrakli O and Yildiz D E 2018 J. Electron. Mater. 47 2979CrossRefGoogle Scholar
  19. 19.
    Uslu H, Altindal S, Polat I, Bayrak H and Bacaksiz E 2011 J. Alloys Compd. 509 5555CrossRefGoogle Scholar
  20. 20.
    Gullu H H, Bayrakli O, Yildiz D E and Parlak M 2017 J. Mater. Sci. Mater. Electron. 28 17806CrossRefGoogle Scholar
  21. 21.
    Tataroglu A and Pur F Z 2013 Phys. Scr. 88 015801CrossRefGoogle Scholar
  22. 22.
    Tataroglu A and Altindal S 2009 J. Alloys Compd. 484 405CrossRefGoogle Scholar
  23. 23.
    Chand S and Kumart J 1995 Semicond. Sci. Technol. 10 1680CrossRefGoogle Scholar
  24. 24.
    Cola A, Lupo M G, Vasanelli L and Valentini A 1993 Solid State Electron. 36 785CrossRefGoogle Scholar
  25. 25.
    Suzue K, Mohammad S N, Fan Z F, Kim W, Aktas O, Botchkarev A E et al 1998 J. Appl. Phys. 80 4467CrossRefGoogle Scholar
  26. 26.
    Motayed A and Mohammad S N 2005 J. Chem. Phys. 123 194703CrossRefGoogle Scholar
  27. 27.
    Altindal S, Karadeniz S, Tugluoglu N and Tataroglu A 2003 Solid State Electron. 47 1847CrossRefGoogle Scholar
  28. 28.
    Tung R T 1992 Phys. Rev. B 45 13509CrossRefGoogle Scholar
  29. 29.
    Turut A, Saglam M, Efeoglu H, Yalcin N, Yildirim M and Abay B 1995 Physica B 205 41CrossRefGoogle Scholar
  30. 30.
    Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85CrossRefGoogle Scholar
  31. 31.
    Akkal B, Benamara Z, Boudissa A, Bachir Bouiadjra N, Amrani M, Bideux L et al 1998 Mater. Sci. Eng. B 55 162Google Scholar
  32. 32.
    Tung R T 2001 Mater. Sci. Eng. Rep. 35 1CrossRefGoogle Scholar
  33. 33.
    Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522CrossRefGoogle Scholar
  34. 34.
    Hudait M, Venkateswarlu P and Krupanidhi S 2001 Solid State Electron. 45 133CrossRefGoogle Scholar
  35. 35.
    Werner J H and Güttler H H 1993 J. Appl. Phys. 73 1315CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • H H Gullu
    • 1
  • D E Yildiz
    • 2
    Email author
  • Ö Bayrakli Sürücü
    • 3
    • 4
    • 5
  • M Terlemezoglu
    • 3
    • 4
    • 6
  • M Parlak
    • 3
    • 4
  1. 1.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey
  2. 2.Department of PhysicsHitit UniversityCorumTurkey
  3. 3.Center for Solar Energy Research and Applications (GÜNAM)Middle East Technical UniversityAnkaraTurkey
  4. 4.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  5. 5.Department of PhysicsKirsehir Ahi EvranKırsehirTurkey
  6. 6.Department of PhysicsTekirdag Namik Kemal UniversityTekirdagTurkey

Personalised recommendations