Skip to main content

Advertisement

Log in

Interface engineering of \(\hbox {TiO}_{2}\)@PANI nanostructures for efficient visible-light activation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Core–shell-structured \(\hbox {TiO}_{2}\)@PANI composites were fabricated using negatively charged titanium glycolate (TG) precursor spheres, which were decorated using hydrochloric acid; subsequently, the uniform polyaniline (PANI) layer could be attached onto the surface of the polystyrene spheres by in situ chemical oxidative polymerization and finally, the resulting PANI-grafted TG were allowed to hydrolyse by treating the material with hot water. The TGs were transformed to porous \(\hbox {TiO}_{2}\), leading to the formation of core–shell \(\hbox {TiO}_{2}\)@PANI composites. The resulting \(\hbox {TiO}_{2}\)@PANI composite photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflection spectroscopy and photoluminescence spectroscopy. Significantly, the \(\hbox {TiO}_{2}\)@PANI composite photocatalysts exhibited dramatically enhanced photo-induced electron–hole separation efficiency, which was confirmed by the results of photocurrent measurements. PANI was dispersed uniformly over the porous \(\hbox {TiO}_{2}\) surface with an intimate electronic contact on the interface to act cooperatively to achieve enhanced photocatalytic properties, indicating that core–shell \(\hbox {TiO}_{2}\)@PANI composite photocatalysts could be promising candidate catalysts under visible-light irradiation. The mechanism of enhancing photocatalytic activity was proposed on the basis of the experimental results and estimated energy band positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu X G, Dong G J, Li S P, Lu G X and Bi Y P 2016 J. Am. Chem. Soc. 138 2917

    Article  CAS  Google Scholar 

  2. Ide Y, Inami N, Hattori H, Saito K, Sohmiya M, Tsunoji N et al 2016 Angew. Chem. Int. Ed. 55 3600

    Article  CAS  Google Scholar 

  3. Li H D, Wang Y N, Chen G H, Sang Y H, Jiang H D, He J T et al 2016 Nanoscale 8 6101

    Article  CAS  Google Scholar 

  4. Zhou Y, Chen C H, Wang N N, Li Y Y and Ding H M 2016 J. Phys. Chem. C 120 6116

    Article  CAS  Google Scholar 

  5. Huang S L, Yu Y L, Yan Y B, Yuan J X, Yin S G and Cao Y A 2016 RSC Adv. 6 29950

    Article  CAS  Google Scholar 

  6. Deng F, Min L J, Luo X B, Wu S L and Luo S L 2013 Nanoscale 5 8703

    Article  CAS  Google Scholar 

  7. Dimitrijevic N M, Tepavcevic S, Liu Y Z, Rajh T, Silver S C and Tiede D M 2013 J. Phys. Chem. C 117 15540

    Article  CAS  Google Scholar 

  8. Zhang J, Wang S R, Xu M J, Wang Y, Xia H J, Zhang S M et al 2009 J. Phys. Chem. C 113 1662

    Article  CAS  Google Scholar 

  9. Pei Z X, Ding L Y, Lu M L, Fan Z H, Weng S X, Hu J et al 2014 J. Phys. Chem. C 118 9570

    Article  CAS  Google Scholar 

  10. Shirota Y and Kageyama H 2007 Chem. Rev. 107 953

    Article  CAS  Google Scholar 

  11. Li C P, Zhou T Z, Zhu T W and Li X Y 2015 RSC Adv. 5 98482

    Article  CAS  Google Scholar 

  12. Ansari M O, Khan M M, Ansari S A and Cho M H 2015 New J. Chem. 39 8381

    Article  CAS  Google Scholar 

  13. Wang F, Min S X, Han Y Q and Feng L 2010 Superlattices Microstruct. 48 170

    Article  CAS  Google Scholar 

  14. Li J, Zhu L H, Wu Y H, Harima Y, Zhang A Q and Tang H Q 2006 Polymer 47 7361

    Article  CAS  Google Scholar 

  15. Liao G Z, Chen S, Quan X, Zhang Y B and Zhao H M 2011 Appl. Catal. B 102 126

    Article  CAS  Google Scholar 

  16. Zou X X, Silva R, Huang X X, Al-Sharab J F and Asefa T 2013 Chem. Commun. 49 382

    Article  CAS  Google Scholar 

  17. Chen L, Yang S D, Hao B, Ruan J M and Ma P C 2015 Appl. Catal. B 166–167 287

    Article  Google Scholar 

  18. Safajou H, Khojasteh H, Salavati-Niasari M and Mortazavi-Derazkola S 2017 J. Colloid Interface Sci. 498 423

    Article  CAS  Google Scholar 

  19. Chen L, Yang S D, Mader E and Ma P C 2014 Dalton Trans. 43 12743

    Article  CAS  Google Scholar 

  20. Bhirud A P, Sathaye S D, Waichal R P, Ambekar J D, Park C J and Kale B B 2015 Nanoscale 7 5023

    Article  CAS  Google Scholar 

  21. Jing L, Yang Z Y, Zhao Y F, Zhang Y X, Guo X, Yan Y M et al 2014 J. Mater. Chem. A 2 1068

    Article  CAS  Google Scholar 

  22. Samsudin E M, Abd Hamid S B, Juan J C, Basirun W J, Kandjani A E and Bhargava S K 2015 RSC Adv. 5 44041

    Article  CAS  Google Scholar 

  23. Pradhan G K, Padhi D K and Parida K M 2013 ACS Appl. Mater. Interfaces 5 9101

    Article  CAS  Google Scholar 

  24. Liu C Y, Huang H W, Du X, Zhang T R, Tian N, Guo Y X et al 2015 J. Phys. Chem. C 119 17156

    Article  CAS  Google Scholar 

  25. Lin T Q, Yang C Y, Wang Z, Yin H, Lu X J, Huang F Q et al 2014 Energy Environ. Sci. 7 967

    Article  CAS  Google Scholar 

  26. Ge L, Han C C and Liu J 2012 J. Mater. Chem. 22 11843

    Article  CAS  Google Scholar 

  27. Khanchandani S, Kumar S and Ganguli A K 2016 ACS Sustainable Chem. Eng. 4 1487

    Article  CAS  Google Scholar 

  28. Gao W Y, Wang M Q, Ran C X, Yao X, Yang H H, Liu J et al 2014 Nanoscale 6 5498

    Article  CAS  Google Scholar 

  29. Kumar S, Baruah A, Tonda S, Kumar B, Shanker V and Sreedhar B 2014 Nanoscale 6 4830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation for Young Scholars Program of Xinjiang Uygur Autonomous Region (2016D01B050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, S. Interface engineering of \(\hbox {TiO}_{2}\)@PANI nanostructures for efficient visible-light activation. Bull Mater Sci 41, 146 (2018). https://doi.org/10.1007/s12034-018-1678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1678-z

Keywords

Navigation