Skip to main content
Log in

Microwave-hydrothermal synthesis of mesoporous \(\upgamma \)-\(\hbox {Al}_{2}\hbox {O}_{3}\) and its impregnation with AgNPs for excellent catalytic oxidation of CO

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous \(\upgamma \)-alumina was synthesized by the microwave-hydrothermal process with a shorter duration time at 150\({^{\circ }}\)C/2 h followed by calcination at 550\({^{\circ }}\)C/1 h. Ag nanoparticles (AgNPs) were impregnated into \(\upgamma \)-alumina under a reducing atmosphere at 450\({^{\circ }}\)C. The synthesized product was characterized by X-ray diffraction (XRD), thermogravimetric (TG)/differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), \(\hbox {N}_{2}\) adsorption–desorption study, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The BET surface area values of \(\upgamma \)-alumina and Ag-impregnated \(\upgamma \)-alumina were found to be 258 and 230 m\(^{2}\) g\(^{-1}\), respectively. FESEM images showed the formation of grain-like particles of 50–70 nm in size with a flake-like microstructure. The XRD, XPS and TEM studies confirmed the presence of Ag in the synthesized product. Catalytic properties of the product for CO oxidation was studied with the \(T_{50}\) (50% conversion) and \(T_{100}\) (100% conversion) values of 118 and 135\({^{\circ }}\)C, respectively; the enhanced values were compared with the literature reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan H, Ma X and Fu M 2013 Bull. Mater. Sci. 36 153

    Article  CAS  Google Scholar 

  2. Yang P, Zhao D, Margolese D I, Chmelka B F and Stucky G D 1998 Nature 396 152

    Article  CAS  Google Scholar 

  3. Ghosh S, Dey K P and Naskar M K 2013 J. Am. Ceram. Soc. 96 28

    Article  CAS  Google Scholar 

  4. Liu Q, Wang A, Wang X and Zhang T 2006 Chem. Mater. 18 5153

    Article  CAS  Google Scholar 

  5. Tok A I Y, Boey F Y C and Zhao X L 2006 Mater. Process. Technol. 178 270

    Article  CAS  Google Scholar 

  6. Parida K M, Pradhan A C, Das J and Sahu N 2009 Mater. Chem. Phys. 113 244

    Article  CAS  Google Scholar 

  7. Li Y, Peng C, Li L and Rao P 2014 J. Am. Ceram. Soc. 97 35

    Article  CAS  Google Scholar 

  8. Edrissi M and Norouzbeigi R 2011 J. Am. Ceram. Soc. 94 4052

    Article  Google Scholar 

  9. Sivadasan A K, Selvam I P and Potty S N 2010 Bull. Mater. Sci. 33 737

    Article  CAS  Google Scholar 

  10. Sommer W J and Weck M 2007 Langmuir 23 11991

    Article  CAS  Google Scholar 

  11. Jones R A, Strickland J A, Stunkard J A and Siegel J 1971 Toxicol. Appl. Pharmacol. 19 46

    Article  CAS  Google Scholar 

  12. Kou T, Lib D, Zhanga C, Zhanga Z and Yanga H 2014 J. Mol. Catal. A: Chem. 382 55

    Article  CAS  Google Scholar 

  13. Townsend C L and Maynard R I 2002 Occup. Environ. Med. 59 708

    Article  CAS  Google Scholar 

  14. Paldey S, Gedevanishvili S, Zhang W and Rasouli F 2005 Appl. Catal. B 56 241

    Article  CAS  Google Scholar 

  15. Li Z X, Shi F B, Li L L, Zhang T and Yan C H 2011 Phys. Chem. Chem. Phys. 13 2488

    Article  CAS  Google Scholar 

  16. Pillai U R and Deevi S 2006 Appl. Catal. B 64 146

    Article  CAS  Google Scholar 

  17. Bose P, Ghosh S, Basak S and Naskar M K 2016 J. Asian Ceram. Soc. 4 1

    Article  Google Scholar 

  18. Chen J L, Li J, Li H J, Huang X M and Shen W J 2008 Microporous Mesoporous Mater. 116 586

    Article  CAS  Google Scholar 

  19. Tian D, Yong G P, Dai Y, Yan X Y and Liu S M 2009 Catal. Lett. 130 211

    Article  CAS  Google Scholar 

  20. Frey K, Iablokov V, Melaet G, Guczi L and Kruse N 2008 Catal. Lett.  124 74

    Article  CAS  Google Scholar 

  21. Yu L B, Shi Y Y, Zhao Z, Yin H B, Wei Y C, Liu J et al 2011 Catal. Commun. 12 616

    Article  CAS  Google Scholar 

  22. Chowdhury I H, Ghosh S, Basak S and Naskar M K 2017 J. Phys. Chem. Solids 104 103

    Article  CAS  Google Scholar 

  23. Wagner C D, Riggs W M, Davis L E, Moulder J F and Muilen-berg G E 1979 In Handbook of X-ray Photoelectron Spectroscopy (eds) Muilen-berg G E (Eden Prairie, MN: Perkin Elmer Corporation)

  24. Chowdhury I H, Ghosh S and Naskar M K 2016 Ceram. Int. 42 2488

    Article  CAS  Google Scholar 

  25. Mishra D, Annad S, Panda R K and Das R P 2002 Mater. Lett. 53 133

    Article  CAS  Google Scholar 

  26. Naskar M K 2009 J. Am. Ceram. Soc. 92 2392

    Article  CAS  Google Scholar 

  27. Abdalsayed V, Aljarash A, El-Shall M S, Othman Z A A and Alghamdi A H 2009 Chem. Mater. 21 2825

    Article  Google Scholar 

  28. Zhang X D, Qu Z P, Li X Y, Wen M, Quan X, Ma D et al 2010 Sep. Purif. Technol. 72 395

    Article  CAS  Google Scholar 

  29. Ji L, Lin J and Zeng H C 2000 J. Phys. Chem. B 104 1783

    Article  CAS  Google Scholar 

  30. Rattan G and Kumar M 2014 Chem. Chem. Technol. 8 249

    Article  CAS  Google Scholar 

  31. Grunwaldt J D, Kiener C, Wogerbauer C and Baiker A 1999 J. Catal. 181 223

    Article  CAS  Google Scholar 

  32. Wang W H and Cao G Y 2006 Chin. J. Chem. 24 817

    Article  CAS  Google Scholar 

  33. Kolodziejczyk M, Colen R E R, Berdau M, Delmon B and Block J H 1997 Surf. Sci. 375 235

    Article  CAS  Google Scholar 

  34. Royer S and Duprez D 2011ChemCatChem 3 24

    Article  CAS  Google Scholar 

  35. Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director of CSIR-CGCRI for his kind permission to pursue this work. The author S.K., an AcSIR fellow, is grateful to CSIR, Government of India for her fellowship. The financial support from the Department of Science and Technology under the DST-SERB sponsored project, GAP 0616 (Grant No. SR/S3/ME/0035/2012), Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Kanti Naskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Naskar, M.K. Microwave-hydrothermal synthesis of mesoporous \(\upgamma \)-\(\hbox {Al}_{2}\hbox {O}_{3}\) and its impregnation with AgNPs for excellent catalytic oxidation of CO. Bull Mater Sci 41, 161 (2018). https://doi.org/10.1007/s12034-018-1675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1675-2

Keywords

Navigation