Skip to main content

Advertisement

Log in

Thermo-transport properties of Zn-substituted layered Li-nickel oxide, \(\hbox {LiNiO}_{2}\)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The layered Li-TM-\(\hbox {O}_{2}\) materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted \(\hbox {LiNi}_{1-x}\hbox {Zn}_{x}\hbox {O}_{2}\) for \(0 \le x \le 0.16\) have been investigated in the temperature range of 300–900 K for potential application as a high-temperature thermoelectric material. For \(x < 0.08\), the compounds were of single phase belonging to the space group R-3mH while for \(x > 0.08\) an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of  \(\sim 10^{-4}\) to \(10^{-2}\,\,\Omega \hbox {m}\) between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, \(\sim \)10  meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from \(\sim \)95 to \(35\ \upmu \hbox {V K}^{-1}\) and the corresponding power factor is \(\sim \)12\(\ \upmu \hbox {W m}^{-1}\ {\hbox {K}}^{-2}\) for the \(x = 0.16\) compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Tripathi M N and Bhandari C M 2003 J. Phys. Condens. Matter 15 5359

    Article  CAS  Google Scholar 

  2. Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z et al 2008 Appl. Phys. Lett. 93 193121

    Article  Google Scholar 

  3. Molenda J, Wilk P and Marzec J 2002 Solid State Ionics 146 73

    Article  CAS  Google Scholar 

  4. Mallick M M and Vitta S 2017 Inorg. Chem. 56 5827

    Article  CAS  Google Scholar 

  5. Levasseur S, Menetrier M and Delmas C 2002 Chem. Mater. 14 3584

    Article  CAS  Google Scholar 

  6. Hirano A, Kanno R, Kawamoto Y, Takeda Y et al 1995 Solid State Ionics 78 123

    Article  CAS  Google Scholar 

  7. Krasutskaya N S, Klyndyuk A I, Evseeva L E and Tanaeva S A 2016 Inorg. Mater. 52 393

    Article  CAS  Google Scholar 

  8. Wang L, Wang M and Zhao D 2009 J. Alloys Compd. 471 519

    Article  CAS  Google Scholar 

  9. Dahn J R, von Sacken U, Juzkow M W and Aljanaby H 1991 J. Electrochem. Soc. 138 2207

    Article  CAS  Google Scholar 

  10. Song M Y, Kim H U and Park H R 2014 Ceram. Int. 40 4219

    Article  CAS  Google Scholar 

  11. Wang G X, Zhong S, Bradhurst D H, Dou S X and Liu H K 1998 J. Power Sources 76 141

    Article  CAS  Google Scholar 

  12. Mizuno S, Fujishiro H, Ishizawa M, Naito T, Katsui H and Goto T 2017 Jpn. J. Appl. Phys. 56 21101

    Article  Google Scholar 

  13. Mallick M, Rajput K and Vitta S 2017 Ionics 23 2651

    Article  CAS  Google Scholar 

  14. Koyama Y, Mizoguchi T, Ikeno H and Tanaka I 2005 J. Phys. Chem. B 109 10749

    Article  CAS  Google Scholar 

  15. Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 57201

    Article  Google Scholar 

  16. Liu Y and Qin X Y 2006 J. Phys. Chem. Solids 67 1893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge ‘Nano mission’ of the Department of Science and Technology and ISRO-IITB Space Technology Cell for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Mofasser Mallick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, M.M., Vitta, S. Thermo-transport properties of Zn-substituted layered Li-nickel oxide, \(\hbox {LiNiO}_{2}\). Bull Mater Sci 41, 150 (2018). https://doi.org/10.1007/s12034-018-1669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1669-0

Keywords

Navigation