Skip to main content
Log in

Comparative study of structural, optical and magnetic properties of Fe–Pt, Fe–Cu and Fe–Pd-codoped \(\hbox {WO}_{3}\) nanocrystalline ceramics: effect of annealing in hydrogen atmosphere

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Tungsten oxide (W-oxide) nanoparticles doped and codoped with different transition-metal (TM) ions (Fe, Pt, Cu and Pd) were synthesized by hydrochloric acid-assisted precipitation. The synthesized powders were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and magnetic characterization methods. The room temperature (RT) monoclinic (P21/n) structure founded for pristine \(\hbox {WO}_{3}\) nanopowder was converted into orthorhombic (Pbam) structure by Fe-doping, while codoping, (Fe–Pt) and (Fe–Cu) preserved the P21/n space group (SG) structure. It was found that the hydrogenation of the synthesized doped-samples corroded the crystallites without changing the crystalline SG structure. Moreover, controllable room temperature ferromagnetic (RT-FM) properties were created by hydrogenation of the codoped W-oxide samples. The oxygen vacancies-mediated ferromagnetic (FM) interaction could be responsible for the observed FM. The relative highest RT-FM energy was created with hydrogenated Fe–Pd codoped W-oxide. Therefore, Fe–Pd-codoped W-oxide nanopowder could be considered as a potential candidate for many applications involving partial FM properties, such as catalysts and optical phosphors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao P 2015 PhD thesis (Germany: University of Bremen)

  2. El-Nouby M S 2014 PhD thesis (Osaka, Japan: Osaka University, OUKA)

  3. Migas D B, Shaposhnikov V L and Borisenko V E 2010 J. Appl. Phys. 108 093714

    Article  Google Scholar 

  4. Yan H, Zhang X, Zhou S, Xie X, Luo Y and Yu Y 2011 J. Alloys Compd. 509 L232

    Article  CAS  Google Scholar 

  5. Lee K, Seo W S and Park J T 2003 J. Am. Chem. Soc. 125 3408

    Article  CAS  Google Scholar 

  6. Lee S, Deshpande R, Parilla P A, Jones K M, To B, Mahan A H et al 2006 Adv. Mater. 18 763

    Article  CAS  Google Scholar 

  7. Yamamoto S, Takano K, Inouye A and Yoshikawa M 2007 Nucl. Instrum. Meth. Phys. Res. Sect. B 262 29

    Article  CAS  Google Scholar 

  8. Reyes L F, Hoel A, Saukko S, Hessler P, Lantto V and Granqvist C G 2006 Sens. Actuators B 117 128

    Article  CAS  Google Scholar 

  9. Khatko V, Vallejos S, Calderer J, Gracia I, Cane C, Llobet E et al 2009 Sens. Actuators B 140 356

    Article  CAS  Google Scholar 

  10. Castro-Hurtadoa I, Tavera T, Yurrita P, Perez N, Rodriguez A, Mandayo G G et al 2013 Appl. Surf. Sci. 276 229

    Article  Google Scholar 

  11. Therese H A, Li J, Kolb U and Tremel W 2005 Solid State Sci. 7 67

    Article  CAS  Google Scholar 

  12. Djaoued Y, Priya S and Balaji S 2008 J. Non-Cryst. Solids 354 673

    Article  CAS  Google Scholar 

  13. Wang G, Ji Y, Huang X, Yang X, Gouma P and Dudley M 2006 J. Phys. Chem. B 110 23777

    Article  CAS  Google Scholar 

  14. Yang B, Li H, Blackford M and Luca V 2006 Curr. Appl. Phys. 6 436

    Article  Google Scholar 

  15. Hariharan V, Aroulmoji V, Prabakaran K, Gnanavel B, Parthibavarman M, Sathyapriya R et al 2016 J. Alloys Compd. 689 41

    Article  CAS  Google Scholar 

  16. Kaminski A and Sarma S D 2002 Phys. Rev. Lett. 88 247202

    Article  CAS  Google Scholar 

  17. Wolff P A, Bhatt R N and Durst A C 1996 J. Appl. Phys. 79 5196

    Article  CAS  Google Scholar 

  18. Lewis E A, Le D, Murphy C J, Jewell A D, Mattewra M F G, Liriano M L et al 2012 J. Phys. Chem. C 116 25868

    Article  CAS  Google Scholar 

  19. Pozzo M and Alfe D 2009 Int. J. Hydrog. Energy 34 1922

    Article  CAS  Google Scholar 

  20. Wua E, Li W and Li J 2012 Int. J. Hydrog. Energy 37 1509

  21. Zaluska A, Zaluski L and Strom-Olsen J O 1999 J. Alloys Compd. 288 217

    Article  CAS  Google Scholar 

  22. Dakhel A A 2017 J. Supercond. Novel. Magn. Published online 24 November, https://doi.org/10.1007/s10948-017-4430-9

  23. Luca L Introduction to diffraction and the Rietveld method (Corso: Laboratorio Scienza e Tecnologia dei Materiali) www.ing.unitn.it/~luttero/laboratoriomateriali/RietveldRefinements.pdf

  24. Tanisaki S 1960 J. Phys. Soc. Jpn. 15 573

    Article  CAS  Google Scholar 

  25. Woodward P M, Sleight A W and Vogt T 1995 J. Phys. Chem. Solids 56 1305

    Article  CAS  Google Scholar 

  26. Barabanenkov Yu A, Zakharov N D, Zibrov I P, Filonenko V P, Werner P, Popov A I et al 1993 Acta Cryst. B 49 169

    Article  Google Scholar 

  27. Shannon R D 1976 Acta Crystallogr. A 32 751

  28. Kittel C 1996 Introduction to solid state physics (NY, USA: John Wiley & Sons)

    Google Scholar 

  29. Torrent J and Barron V 2002 Encyclopedia of surface and colloid science (NY, USA: Marcel Dekker Inc.)

    Google Scholar 

  30. Yaacob M H, Breedon M, Kalantar-Zadeh K and Wlodarski W 2009 Sens. Actuators B 137 115

    Article  Google Scholar 

  31. Manfang M, Xinzhou M, Hua Z, Mao Y, Tao L, Shanming K et al 2017 J. Alloys Compd. 722 913

  32. Matteo G, Carlo E B, Lucia C, Giovanni O, Cristiana D V and Gianfranco P 2015 J. Chem. Phys. 143 134702

  33. Johansson M B, Baldissera G, Valyukh I, Persson C, Arwin H, Niklasson G et al 2013 J. Phys.: Condens. Matter 25 205502

  34. Tauc J and Abeles F (eds) 1969 Optical properties of solids (Amsterdam: North Holland Publishing Co.)

  35. Cole B, Marsen B, Miller E, Yan Y, To B, Jones K et al 2008 J. Phys. Chem. C 112 5213

    Article  CAS  Google Scholar 

  36. Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z et al 2015 Appl. Catal. B 166–167 112

  37. Aguir K, Lemire C and Lollman D B B 2002 Sens. Actuators B 84 1

    Article  CAS  Google Scholar 

  38. Wang H, Dong X, Peng S, Dong L and Wang Y 2012 J. Alloys Compd. 527 204

  39. Polaczek A, Pekala M and Obuszko Z 1994 J. Phys. Condens. Matter 6 7909

    Article  CAS  Google Scholar 

  40. The University of the West Indies, Mona, Jamaica, Dept. of Chemistry, available: http://wwwchem.uwimona.edu.jm/spectra/MagMom.html (accessed on 8 September 2017)

  41. Cheng W and Ma X 2009 J. Phys.: Conf. Ser. 152 012039

  42. Yeganeh M, Shahtahmasebi N, Kompany A, Karimipour M, Razavi F, Nasralla N H S et al 2017 Physica B: Condens. Matter 511 89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Dakhel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Comparative study of structural, optical and magnetic properties of Fe–Pt, Fe–Cu and Fe–Pd-codoped \(\hbox {WO}_{3}\) nanocrystalline ceramics: effect of annealing in hydrogen atmosphere. Bull Mater Sci 41, 139 (2018). https://doi.org/10.1007/s12034-018-1667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1667-2

Keywords

Navigation