Skip to main content

Advertisement

Log in

Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The new biomass carbonaceous materials were obtained from macadamia nut shells (MNS) by immersion method and high-temperature activation (MNSCA) for high-performance supercapacitors. The morphologies and microstructures are investigated by X-ray diffractometer, Raman spectrometer, scanning electron microscopy and transmission electron microscopy. The experimental results show that the obtained activated carbon (MNSCA) exhibits perfect porous structure filled with more micropores and mesopores. MNSCA displays high specific surface area of 1057 \(\hbox {m}^{2}\hbox { g}^{-1}\). The porous carbon delivers an impressive specific capacitance of 325.7 F \(\hbox {g}^{-1}\) and has no capacitance loss at the current density of 2 A \(\hbox {g}^{-1}\) after 10,000 cycles, which demonstrates the excellent cycle stability and high specific capacitance. The biomass carbonaceous materials derived from MNS can be expected for the widespread application of supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simon P and Gogotsi Y 2008 Nat. Mater. 7 845

    Article  CAS  Google Scholar 

  2. Pech D, Durou M H, Huang P, Mochalin V, Gogotsi Y, Taberna P et al 2010 Nat. Nanotechnol. 5 651

    Article  CAS  Google Scholar 

  3. Liu C, Yu Z, Neff D, Zhamu A and Zhamu B Z 2010 Nano Lett10 4863

    Article  CAS  Google Scholar 

  4. Li H B, Yu M H, Lu X H, Liu P, Liang Y, Xiao J et al 2014 ACS Appl. Mat. Interfaces 6 745

    Article  CAS  Google Scholar 

  5. Xie K, Qin X T, Wang X Z, Wang Y N, Tao H S, Wu Q et al 2012 Adv. Mater. 24 347

    Article  CAS  Google Scholar 

  6. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba D N, Hatori H et al 2010 Adv. Mater. 22 235

    Article  Google Scholar 

  7. Zou Y and Wang Y 2013 Chem. Eng. J. 229 183

    Article  CAS  Google Scholar 

  8. Miller J R and Simon P 2008 Sci. Mag. 321 651

    CAS  Google Scholar 

  9. Zhai Y P, Dou Y Q, Zhao D Y, Fulvio P F, Mayes R T and Dai S 2011 Adv. Mater. 23 4828

    Article  CAS  Google Scholar 

  10. Kim H, Fortunato M E, Xu H X, Bang J H and Suslick K S 2011 J. Phys. Chem. C 115 20481

  11. Lei Z B, Christov N and Zhao X S 2011 Energy Environ. Sci. 4 1866

    Article  CAS  Google Scholar 

  12. Zhu Y W, Murali S, Stoller M D, Ganesh K J, Cai W W, Ferreira P J et al 2011 Science 32 1537

    Article  Google Scholar 

  13. Wang K, Zhao N, Lei S, Lei S W, Yan R, Tian X D et al 2015 Electrochim. Acta 166 1

    Article  CAS  Google Scholar 

  14. Wang L, Zheng Y L, Zhang Q Y, Zuo L, Chen S L, Chen S H et al 2014 RSC Adv. 4 51072

    Article  CAS  Google Scholar 

  15. Lv Y K, Gan L H, Liu M X, Xiong W, Xu Z J, Zhu D Z et al 2012 J. Power Sources 209 152

    Article  CAS  Google Scholar 

  16. Emaga T H, Bindelle J, Agneesens R, Buldgen A, Wathelet B and Paquot M 2011 Trop. Anim. Health Prod. 43 171

    Article  Google Scholar 

  17. Subramanian V, Luo C, Stephan A M, Nahm K S, Thomas S and Wei B Q 2007 J. Phys. Chem. C 111 7527

    Article  CAS  Google Scholar 

  18. Ruan C P, Ai K L and Lu L H 2014 RSC Adv. 4 30887

    Article  CAS  Google Scholar 

  19. Wu X L, Wen T, Guo H L, Yang S B, Wang X K and Xu A W 2013 ACS Nano 7 3589

    Article  CAS  Google Scholar 

  20. Balathanigaimani M S, Shim W G, Lee M J, Kim C, Lee J W and Moon H 2008 Electrochem. Commun. 10 868

    Article  CAS  Google Scholar 

  21. Wang S B, Xiao C L, Xing Y L, Xu H Z and Zhang S C 2015 J. Mater. Chem. A 3 6742

    Article  CAS  Google Scholar 

  22. Chen M, Yu C, Liu S H, Fan X M, Zhao C T, Zhang X et al 2015 Nanoscale 7 1791

    Article  CAS  Google Scholar 

  23. Wang H L, Xu Z W, Kohandehghan A, Zhi L, Cui K, Tan X H et al 2013 ACS Nano 7 5131

  24. Wang L, Mu G, Tian C G, Sun L, Zhou W, Yu P et al 2013 ChemSusChem 6 880

    Article  CAS  Google Scholar 

  25. Arrebola J C, Caballero A, Hernán L, Morales J, Marín M O and Serrano V G 2010 J. Electrochem. Soc. 157 A791

    Article  CAS  Google Scholar 

  26. Sadezky A, Muckenhuber H, Grothe H, Niessner R and Poschl U 2005 Carbon 43 1731

    Article  CAS  Google Scholar 

  27. Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R et al 2009 Phys. Rev. B 79 205433

    Article  Google Scholar 

  28. Xing W B, Dunlap R A and Dahn J R 1998 J. Electrochem. Soc. 145 62

    Article  CAS  Google Scholar 

  29. Nakagawa K, Mukai S R, Tamura K and Tamon H 2007 Chem. Eng. Res. Des85 1331

    Article  CAS  Google Scholar 

  30. Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z and Lou X W 2012 Adv. Mater. 24 5166

    Article  CAS  Google Scholar 

  31. Huang H, Luo G, Xu L, Lei C, Tang Y, Tang S et al 2015 Nanoscale 7 2060

    Article  CAS  Google Scholar 

  32. Su F B, Poh C K, Chen J S, Xu G W, Wang D, Li Q et al 2011 Energy Environ. Sci. 4 717

    Article  CAS  Google Scholar 

  33. Tan Y M, Xu C F, Chen G X, Liu Z H, Ma M, Xie Q J et al 2013 ACS Appl. Mat. Interfaces 5 2241

    Article  CAS  Google Scholar 

  34. Wang C, Xiong Y, Wang H W, Jin C D and Sun Q F 2017 J. Mater. Chem. A 5 15759

    Article  CAS  Google Scholar 

  35. Yang Y C, Shi W, Zhang R H, Luanx C H, Zeng Q, Wang C et al 2016 Electrochim. Acta 204 100

  36. Zhu L H, Gao Q M, Tan Y L, Tian W Q, Xu J D, Yang K et al 2015 Microporous Mesoporous Mater. 210 1

    Article  CAS  Google Scholar 

  37. Luan Y T, Wang L, Guo S, Jiang B J, Zhao D D, Yan H J et al 2015 RSC Adv. 5 42430

    Article  CAS  Google Scholar 

  38. Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X et al 2015 Adv. Mater. 27 3541

    Article  CAS  Google Scholar 

  39. Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S et al 2014 ACS Nano 8 4580

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (51772090, 51572079), Natural Science Foundation of Hunan Province (2016JJ5008, 2016JJ5041) and Hunan Provincial Education Department (16A055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Xiang, K., Zhou, W. et al. Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors. Bull Mater Sci 41, 138 (2018). https://doi.org/10.1007/s12034-018-1666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1666-3

Keywords

Navigation