Skip to main content
Log in

Highly enhanced solar conversion efficiency of novel layer-by-layer PbS:Hg and CdS quantum dots-sensitized ZnO thin films prepared by sol–gel spin coating

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Owing to superior optical properties, ZnO thin films have immense potential in solar cell preparation. ZnO thin films were prepared by sol–gel technology. However, this is prolonged technique and it necessitates a complex precursor solution. In the present work, ZnO thin films are prepared by sol–gel spin coating with simple precursor, zinc acetate. A very remarkable feature of the method is that polycrystalline, non-abrasive and translucent films were obtained. Additionally, novel PbS:Hg quantum dots (QDs) and CdS QDs are successfully synthesized. Moreover, both types of QDs are deposited layer-by-layer over pure ZnO and Ag:ZnO thin films. The films are characterized by X-ray diffraction, and crystallinity continuation is observed even after the addition of QDs layer. Presence of synthesized QDs over thin films is also confirmed. The films were also characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. Uniform, dense and porous surface morphology is clearly revealed. Sensitized thin films show a huge decline in band gap and large enhancement in efficiency. Superior current density (\(10.87~\hbox {mA}~\hbox {cm}^{-2})\) is achieved with PbS:Hg/CdS/Ag:ZnO, which leads to enhancement in overall solar conversion efficiency by 6.34 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi H, Nahm C, Kim J, Kim C, Kang S, Hwang T et al 2013 Curr. Appl. Phys. 13 2

    Article  Google Scholar 

  2. Hu Y, Wang B, Zhang J, Wang T, Liu R, Zhang J et al 2013 Nanoscale Res. Lett. 8 1

    Article  Google Scholar 

  3. Li Y, Yu H, Song W, Li G, Yi B and Shao Z 2011 Int. J. Hydrog. Energy 36 14374

    Article  CAS  Google Scholar 

  4. Gupta M, Sharma V, Shrivastava J, Solanki A, Singh A P, Satsangi V R et al 2009 Mater. Sci. B 32 23

    Article  CAS  Google Scholar 

  5. Zhang X, Lu X, Shen Y, Han J, Yuan L, Gong L et al 2011 Chem. Commun. 47 5804

    Article  CAS  Google Scholar 

  6. Shejale K P, Laishram D, Gupta R and Sharma R K 2017 Energy Tech. 5 489

    Article  CAS  Google Scholar 

  7. Laishram D, Shejale K P, Sharma R K and Gupta R 2016 RSC Adv. 6 78768

    Article  CAS  Google Scholar 

  8. Ma J, Fu W, Yang H, Cheng S, Zhang L, Zhou X et al 2013 Thin Solid Films 545 296

    Article  CAS  Google Scholar 

  9. Lee Y L, Huang B M and Chien H T 2008 Chem. Mater. 20 6903

    Article  CAS  Google Scholar 

  10. Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A et al 2011 J. Am. Chem. Soc. 133 8458

    Article  CAS  Google Scholar 

  11. Chen H M, Chen C K, Chang Y C, Tsai C W, Liu R S, Hu S F et al 2010 Angew. Chem. 122 6102

    Article  Google Scholar 

  12. Zhou Z, Yuan S, Fan J, Hou Z, Zhou W, Du Z et al 2012 Nanoscale Res. Lett. 7 1

    Article  CAS  Google Scholar 

  13. Yu W W, Qu L, Guo W and Peng X 2003 Chem. Mater. 15 28540

    Google Scholar 

  14. Chou C Y, Li C T, Lee C P, Lin L Y, Yeh M H, Vittal R et al 2013 Electrochim. Acta 88 35

    Article  CAS  Google Scholar 

  15. Nozik A J 2008 Chem. Phys. Lett. 457 3

    Article  CAS  Google Scholar 

  16. Lee J W, Hong J D and Park N G 2013 Chem. Commun. 49 6448

    Article  CAS  Google Scholar 

  17. Senthil K, Tak Y, Seol M and Yong K 2009 Nanoscale Res. Lett. 4 1329

    Article  CAS  Google Scholar 

  18. Abd-Elkader O H and Deraz N M 2014 Int. J. Mol. Sci. 15 1842

    Article  Google Scholar 

  19. Lee W, Min S K, Dhas V, Ogale S B and Han S H 2009 Electrochem. Commun. 11 103

    Article  CAS  Google Scholar 

  20. Niesen T P and De Guire M R 2001 J. Electroceram. 6 169

    Article  CAS  Google Scholar 

  21. Khan W, Khan Z A, Saad A A, Shervani S, Saleem A and Naqvi A H 2013 Int. J. Mod. Phys. 22 630

    Article  CAS  Google Scholar 

  22. Mondal S, Kanta K P and Mitra P 2008 J. Phys. Sci. 12 221

    Google Scholar 

  23. Ilican S, Caglar Y, Caglar M and Demirci B 2008 J. Optoelectron Adv. Mater. 10 2592

    CAS  Google Scholar 

  24. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Lee C and Kim J Y 2012 J. Sol–Gel Sci. Tech. 64 750

    Article  CAS  Google Scholar 

  25. Mali S S, Desai S K, Kalagi S S, Betty C A, Bhosale P N, Devan R S et al 2012 Dalton Trans. 41 6130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Chemical Engineering Department, S.V. National Institute, for providing facilities to carry out experimental work and sophisticated analytical instrument facility, S.V. National Institute of Technology, for rendering analytical service for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JIGNASA V GOHEL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LANJEWAR, M., GOHEL, J.V. Highly enhanced solar conversion efficiency of novel layer-by-layer PbS:Hg and CdS quantum dots-sensitized ZnO thin films prepared by sol–gel spin coating. Bull Mater Sci 41, 151 (2018). https://doi.org/10.1007/s12034-018-1664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1664-5

Keywords

Navigation