Bulletin of Materials Science

, 41:147 | Cite as

Plastic crystal-incorporated magnesium ion conducting gel polymer electrolyte for battery application

  • Jyoti Sharma
  • S A HashmiEmail author


Studies on a novel composition of magnesium ion conducting gel polymer electrolyte (GPE), comprising a solution of Mg-salt, magnesium trifluoromethanesulfonate (Mg-triflate or \(\hbox {Mg(Tf)}_{2})\) in a plastic crystal succinonitrile (SN), entrapped in a host polymer poly(vinylidenefluoride–hexafluoropropylene) (PVdF–HFP) was reported. Small amount of an ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf) was added to stabilize the GPE composition. The electrolyte possesses excellent dimensional integrity in the form of free-standing thick film, which offers the ionic conductivity of \(4 \times 10^{-3} \hbox { S } \hbox {cm}^{-1}\) at room temperature \({\sim }26{^{\circ }}\hbox {C}\). The electrochemical potential window of the electrolyte, observed from the linear sweep voltammetry, is determined to be \({\sim }4.1 \hbox { V}\). The magnesium ion conduction in the GPE film is confirmed from cyclic voltammetry, electrochemical impedance spectroscopy and dc polarization techniques. Different structural, thermal and electrochemical studies demonstrate the promising characteristics of the polymer film, suitable as electrolyte in rechargeable magnesium batteries. The potential of the GPE as electrolyte/separator was ascertained by fabricating a prototype magnesium battery of the configuration Mg:graphite composite \(\hbox {anode}/\hbox {GPE}/\hbox {MnO}_{2}\)-cathode. The specific discharge capacity of \(40 \hbox { mAh g}^{-1}\) (with respect to the \(\hbox {MnO}_{2}\) cathode material) was obtained at the first discharge. The cell shows charge–discharge performance for eight cycles with a substantial fading in capacity.


Gel polymer electrolyte plastic crystal succinonitrile magnesium ion conduction ionic liquid magnesium battery 



We thankfully acknowledge the financial support received from University of Delhi (Under the scheme to strengthen R & D Doctoral Research Programme by providing funds to University Faculty, 11-17 Research Fund).


  1. 1.
    Scrosati B 2011 J. Solid State Electrochem. 15 1623CrossRefGoogle Scholar
  2. 2.
    Li C, Cheng F, Ji W and Tao Z 2009 Nano Res. 2 713CrossRefGoogle Scholar
  3. 3.
    Kumar G G and Munichandraiah N 2008 Solid State Ionics 128 203CrossRefGoogle Scholar
  4. 4.
    Yamanaka T, Hayashi A, Yamauchi A and Tatsumisago M 2014 Solid State Ionics 262 601CrossRefGoogle Scholar
  5. 5.
    Kumar G G and Munichandraiah N 2002 Electrochim. Acta 47 1013CrossRefGoogle Scholar
  6. 6.
    Winther J B, Gaadingwe M, Macfarlane D R and Forsyth M 2008 Electrochim. Acta 53 5881CrossRefGoogle Scholar
  7. 7.
    Sheha E 2009 Solid State Ionics 180 1575CrossRefGoogle Scholar
  8. 8.
    Polu A R, Kumar R and Rhee H W 2015 Ionics 21 125CrossRefGoogle Scholar
  9. 9.
    Bradwell D J, Kim H, Sirk A H C and Sadoway D R 2012 J. Am. Chem. Soc. 134 1895CrossRefGoogle Scholar
  10. 10.
    Aurbach D, Weissman I, Gofer Y and Levi E 2003 Chemical Record 3 61CrossRefGoogle Scholar
  11. 11.
    Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S et al 2012 Energy Environ. Sci. 5 5941CrossRefGoogle Scholar
  12. 12.
    Oh J S, Ko J M and Kim D W 2004 Electrochim. Acta 50 903CrossRefGoogle Scholar
  13. 13.
    Aravindan V, Karthikaselvi G, Vickraman P and Naganandhini S P 2009 J. Appl. Polym. Sci. 112 3024CrossRefGoogle Scholar
  14. 14.
    Yoshimoto N, Yahushiji S, Ishikawa M and Morita M 2003 Electrochim. Acta 112 2317CrossRefGoogle Scholar
  15. 15.
    Narayanan N S V, Raj B V A and Sampath S 2010 J. Power Sources 195 4356CrossRefGoogle Scholar
  16. 16.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R et al 2000 Nature 407 724CrossRefGoogle Scholar
  17. 17.
    Yang L L, Huq R and Farrington G C 1986 Solid State Ionics 18–19 291CrossRefGoogle Scholar
  18. 18.
    Cherng J Y, Munshi M Z A, Owens B B and Smyrl W H 1988 Solid State Ionics 28–30 857CrossRefGoogle Scholar
  19. 19.
    Sharma J and Hashmi S A 2013 J. Solid State Electrochem. 17 2283CrossRefGoogle Scholar
  20. 20.
    Agrawal R C and Pandey G P 2008 J. Phys. D: Appl. Phys. 41 223001CrossRefGoogle Scholar
  21. 21.
    Xiao W, Li X, Guo H, Wang Z, Zhang Y and Zhang X 2012 Electrochim. Acta 85 612CrossRefGoogle Scholar
  22. 22.
    Kumar D and Hashmi S A 2010 Solid State Ionics 181 416CrossRefGoogle Scholar
  23. 23.
    Yang Y Q, Chang Z, Li M X, Wang X W and Wu Y P 2015 Solid State Ionics 269 1CrossRefGoogle Scholar
  24. 24.
    Suleman Md, Kumar Y and Hashmi S A 2013 J. Phys. Chem. B 117 7436CrossRefGoogle Scholar
  25. 25.
    Alarco P J, Lebdeh Y A, Abouimrane A and Armand M 2004 Nat. Mater. 3 476CrossRefGoogle Scholar
  26. 26.
    Das S, Prathapa J, Menezes P V, Row T N G and Bhattacharyya A J 2009 J. Phys. Chem. B 113 5025CrossRefGoogle Scholar
  27. 27.
    Fan L Z, Wang X L and Long F 2009 J. Power Sources 189 775CrossRefGoogle Scholar
  28. 28.
    Echeverri M, Kim N and Kyu T 2012 Macromolecules 45 6068CrossRefGoogle Scholar
  29. 29.
    Xu K, Ding M S and Jow T R 2001 Electrochim. Acta 46 1823CrossRefGoogle Scholar
  30. 30.
    Kumar G G and Munichandraiah N 1999 Electrochim. Acta 44 2663CrossRefGoogle Scholar
  31. 31.
    Hashmi S A and Chandra S 1995 J. Mater. Sci. Eng. B 34 18CrossRefGoogle Scholar
  32. 32.
    Aurbach D, Gofer Y, Lu Y, Schechter A, Chusid O, Gizbar H et al 2001 J. Power Sources 97–98 28CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations