Skip to main content
Log in

Orientation-dependent crack-tip blunting and crack propagation in a single crystal BCC iron

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Atomistic simulations of cracks with four different orientations in body-centered cubic single crystal iron are presented using molecular dynamics. Crystal orientation has considerable effect on the activation and evolution of crack propagation mechanisms. The results reveal that (a) crack-tip blunting depends on the crystallographic orientation, (b) continuous generation of dislocations form crack tip occurs for large crack-tip blunting, and (c) absence of deformation activities like dislocation generation, twin formation, etc. at the crack tip results in crack propagation in a brittle manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Özden U A, Mingard K P, Zivcec M, Bezold A and Broeckmann C 2015 Int. J. Refract. Met. Hard Mater. 49 261

    Article  Google Scholar 

  2. Dewang Y, Hora M S and Panthi S K 2015 Trans. Nonferr. Met. Soc. China 25 2308

    Article  CAS  Google Scholar 

  3. Paul S K and Tarafder S 2013 Int. J. Press. Vessel. Pip. 101 81

    Article  Google Scholar 

  4. Paul S K 2016 Eng. Fract. Mech. 159 90

    Article  Google Scholar 

  5. Paul S K 2016 Eng. Fract. Mech. 158 13

    Article  Google Scholar 

  6. Paul S K 2016 Theor. Appl. Fract. Mech. 84 183

    Article  Google Scholar 

  7. Proudhon H, Li J, Wang F, Roos A, Chiaruttini V and Forest S 2016 Int. J. Fatigue 82 238

    Article  Google Scholar 

  8. Lin B, Zhao L G and Tong J 2011 Eng. Fract. Mech. 78 2174

    Article  Google Scholar 

  9. Li L, Shen L and Proust G 2015 Mech. Mater. 81 84

    Article  Google Scholar 

  10. Keyhani A, Goudarzi M, Mohammadi S and Roumina R 2015 Comput. Mater. Sci. 104 98

    Article  Google Scholar 

  11. White P 2012 Int. J. Fatigue 44 141

    Article  CAS  Google Scholar 

  12. Sainath G, Choudhary B K and Jayakumar T 2015 Comput. Mater. Sci. 104 76

    Article  CAS  Google Scholar 

  13. Kumar S and Das S K 2017 Phys. Chem. Chem. Phys. https://doi.org/10.1039/C7CP03902F

    Book  Google Scholar 

  14. Ersland C H, Vatne I R and Thaulow C 2012 Model. Simul. Mater. Sci. Eng. 20 075004

    Article  Google Scholar 

  15. Sainath G and Choudhary B K 2016 Comput. Mater. Sci. 111 406

    Article  CAS  Google Scholar 

  16. Zhang Y, Jiang S, Zhu X and Zhao Y 2016 Eng. Fract. Mech. 168 147

    Article  Google Scholar 

  17. Honeycombe R W K 1968 The plastic deformation of metals (London: Edward Arnold)

    Google Scholar 

  18. Allen N P, Hopkins B E and McLennan J E 1956 Proc. R. Soc. Lond. A 234 221

    Article  CAS  Google Scholar 

  19. Biggs W D and Pratt P L 1958 Acta Metall. 6 694

    Article  CAS  Google Scholar 

  20. Nohava J, Haŭsild P, Karlík M and Bompard P 2002 Mater. Charact. 49 211

    Article  CAS  Google Scholar 

  21. Xu S and Deng X 2008 Nanotechnology 19 115705

    Article  Google Scholar 

  22. Guo Y F, Wang Y S, Zhao D L and Wu W P 2007 Acta Mater. 55 6634

    Article  CAS  Google Scholar 

  23. Wu W P and Yao Z Z 2012 Theor. Appl. Fract. Mech. 62 67

    Article  CAS  Google Scholar 

  24. Shastry V and Farkas D 1996 Model. Simul. Mater. Sci. Eng. 4 473

    Article  CAS  Google Scholar 

  25. Hora P, Pelikán V, Machová A, Spielmannová A, Prahl J, Landa M et al 2008 Eng. Fract. Mech. 75 3612

    Article  Google Scholar 

  26. Machová A and Beltz G E 2004 Mater. Sci. Eng. A 387389 414

    Article  Google Scholar 

  27. Zhang Y, Jiang S, Zhu X and Zhao Y 2017 Res. Phys. 7 1722

    Google Scholar 

  28. Zhang Y, Jiang S, Zhu X and Zhao Y 2017 Physica E 87 281

    Article  CAS  Google Scholar 

  29. Sung P-H and Chen T-C 2015 Comput. Mater. Sci. 102 151

    Article  CAS  Google Scholar 

  30. Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y and Asta M 2003 Philos. Mag. 83 3977

    Article  CAS  Google Scholar 

  31. Plimpton S J 1995 J. Comput. Phys. 117 1

    Article  CAS  Google Scholar 

  32. Faken D and Jónsson H 1994 Comput. Mater. Sci. 2 279

    Article  CAS  Google Scholar 

  33. Duo L I, Wang F C, Yang Z Y and Zhao Y P 2014 Sci. China Phys. Mech. 57 2177

    Article  Google Scholar 

  34. Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K., Kumar, S. & Tarafder, S. Orientation-dependent crack-tip blunting and crack propagation in a single crystal BCC iron. Bull Mater Sci 41, 148 (2018). https://doi.org/10.1007/s12034-018-1661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1661-8

Keywords

Navigation