Skip to main content
Log in

Metal-chelated cryogels for amyloglucosidase adsorption: application for continuous starch hydrolysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, a new metal-chelating platform was designed by using IDA as a chelating agent and Cu(II) as an affinity component for amyloglucosidase adsorption. Poly(AAm-GMA) cryogels were used as structural elements, while GMA monomer served reactive epoxy groups for IDA immobilization. Synthesized cryogels were characterized by FTIR, SEM and EDX studies. Pore diameter of the whole polymeric structure was 3–10 \(\upmu \hbox {m}\). Effects of medium pH, temperature, ionic strength along with amyloglucosidase concentration were also investigated for more effective amyloglucosidase adsorption and maximum adsorbed amount of amyloglucosidase was \(2.93\,\hbox {mg }\hbox {g}^{-1}\) cryogel by the optimum conditions. Reusability profile of the poly(AAm-GMA)-IDA-\(\hbox {Cu}^{2+}\) cryogels was also studied and it was found that the synthesized cryogels could be used repeatedly for many times without any significant decrease on their adsorption capacity. Also continuous hydrolysis of starch by using immobilized form of amyloglucosidase in a column system was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Porath J, Carlsson J, Olsson I and Belfrage G 1975 Nature 258 598

    Article  CAS  Google Scholar 

  2. Gupta M N, Jain S and Roy I 2002 Biotechnol. Prog. 18 78

    Article  CAS  Google Scholar 

  3. Ivanov A E, Galaev I Y, Kazakov S V and Mattiasson B 2001 J. Chromatogr. A 907 115

    Article  CAS  Google Scholar 

  4. Denizli A, Alkan M, Garipcan B, Özkara S and Pişkin E 2003 J. Chromatogr. B 795 93

    Article  CAS  Google Scholar 

  5. Yabutani T, Sumi H, Nakamura T, Akatsuki S and Thuy L T X 2012 Anal. Sci. 28 463

    Article  CAS  Google Scholar 

  6. Altıntaş E B, Yavuz H, Say R and Denizli A 2006 J. Biomater. Sci. Polym. Ed. 17 213

    Article  Google Scholar 

  7. Uygun D A, Şenay R H, Türkcan C, Akgöl S and Denizli A 2012 Appl. Biochem. Biotechnol. 168 1528

    Article  CAS  Google Scholar 

  8. Lin P-C, Lin S-C and Hsu W-H 2008 J. Chin. Inst. Chem. Eng. 39 389

    Article  CAS  Google Scholar 

  9. Lozinsky V I, Galaev I Y, Plieva F M, Savina I N, Jungvid H and Mattiasson B 2003 Trends Biotechnol. 21 445

    Article  CAS  Google Scholar 

  10. Uygun M, Akduman B, Ergönül B, Uygun D A, Akgöl S and Denizli A 2015 J. Biomater. Sci. Polym. Ed. 26 1112

    Article  CAS  Google Scholar 

  11. Bibi N S, Singh N K, D’souza R N, Aasim M and Fernández-Lahore M 2013 J. Chromatogr. A 1272 145

    Article  CAS  Google Scholar 

  12. Onnby L, Giorgi C, Plieva F M and Mattiasson B 2010 Biotechnol. Prog. 26 1295

    Article  Google Scholar 

  13. Efremenko E, Votchitseva Y, Plieva F, Galaev I and Mattiasson B 2006 Appl. Microbiol. Biotechnol. 70 558

    Article  CAS  Google Scholar 

  14. Kumar A, Bansal V, Andersson J, Roychoudhury P K and Mattiasson B 2006 J. Chromatogr. A 1103 35

    Article  CAS  Google Scholar 

  15. Reddy P S, Rani D J and Sulthana S 2011 J. Pure Appl. Microbiol. 5 167

    CAS  Google Scholar 

  16. James J A and Lee B H 1997 J. Food Biochem. 21 1

    Article  CAS  Google Scholar 

  17. Wang F, Guo C, Liu H-Z and Liu C-Z 2007 J. Mol. Catal. B 48 1

    Article  CAS  Google Scholar 

  18. Osman B, Kara A and Beşirli N 2011 J. Macromol. Sci. Part A 48 387

    Article  CAS  Google Scholar 

  19. Zhao G, Li Y, Wang J and Zhu H 2011 Appl. Microbiol. Biotechnol. 91 591

    Article  CAS  Google Scholar 

  20. Zhao G, Wang J, Li Y, Huang H and Chen X 2012 Biochem. Eng. J. 68 159

    Article  CAS  Google Scholar 

  21. Baydemir G, Derazshamshir A, Andaç M, Andaç C and Denizli A 2012 J. Appl. Polym. Sci. 126 575

    Article  CAS  Google Scholar 

  22. Torres R, Pessela B C C, Mateo C, Ortiz C, Fuentes M, Guisan J M et al 2004 Biotechnol. Progr. 20 1297

    Article  CAS  Google Scholar 

  23. Marin-Zamoraa M E, Rojas-Melgarejoa F, Garcia-Canovasb F and Garcia-Ruiz P A 2006 J. Biotechnol. 126 295

    Article  Google Scholar 

  24. Rebros M, Rosenberg M, Mlichova Z, Kristofikova L and Paluch M 2006 Enzyme Microb. Technol. 39 800

    Article  CAS  Google Scholar 

  25. Uygun D A, Uygun M, Akgöl S and Denizli A 2015 Mat. Sci. Eng. C 50 379

    Article  Google Scholar 

  26. Zhou X, Liu D, Zhong L and Yang B 2011 Anal. Bioanal. Chem. 401 1251

    Article  Google Scholar 

  27. Odabaşı M, Uzun L and Denizli A 2004 J. Appl. Polym. Sci93 2501

    Article  Google Scholar 

  28. Luo Q, Zou H, Xiao X, Gou Z, Kong L and Mao X 2001 J. Chromatogr. A 926 255

    Article  CAS  Google Scholar 

  29. Bernfeld P 1955 Methods in enzymology (New York: Academic) vol. I

  30. Milosavic N, Prodanovic R, Jovanovic S and Vujcic Z 2007 Enzyme Microb. Technol. 40 1422

    Article  CAS  Google Scholar 

  31. Wee L L, Annuar M S M, Ibrahim S and Chisti Y 2011 Chem. Eng. Commun. 198 1339

    Article  CAS  Google Scholar 

  32. Altunbaş C, Uygun M, Uygun D A, Akgöl S and Denizli A 2013 Appl. Biochem. Biotechnol. 170 1909

    Article  Google Scholar 

  33. Arvidsson P, Plieva F M, Savina I N, Lozinsky V I, Fexby S, Bülow L et al 2002 J. Chromatogr. A 977 27

    Article  CAS  Google Scholar 

  34. Deraz S, Plieva F M, Galaev I Y, Karlsson E N and Mattiasson B 2007 Enzyme Microb. Technol. 40 786

    Article  CAS  Google Scholar 

  35. Yan C, Shen S, Yun J, Wang L, Yao K and Yao S J 2008 J. Sep. Sci. 31 3879

    Article  CAS  Google Scholar 

  36. Yun J, Shen S, Chen F and Yao K 2007 J. Chromatogr. B 860 57

    Article  CAS  Google Scholar 

  37. Arvidsson P, Plieva F M, Lozinsky V I, Galaev I Y and Mattiasson B 2003 J. Chromatogr. A 986 275

    Article  CAS  Google Scholar 

  38. Sun S, Tang Y, Fu Q, Liu Z, Guo L, Zhao Y et al 2012 Int. J. Biol. Macromol. 50 1002

    Article  CAS  Google Scholar 

  39. Plieva F M, Anderson J, Galaev I Y and Mattiasson B 2004 J. Sep. Sci. 27 828

    Article  CAS  Google Scholar 

  40. La Fuente J L, Canamero P F and Fernandez-Garcia M 2006 J. Polym. Sci. 44 1807

    Article  Google Scholar 

  41. Altıntaş E B, Türkmen D, Karakoç V and Denizli A 2011 Colloids Surf. B: Biointerfaces 85 235

    Article  Google Scholar 

  42. Bereli N, Şener G, Altıntaş E B, Yavuz H and Denizli A 2010 Mater. Sci. Eng. C 30 323

    Article  CAS  Google Scholar 

  43. Tishchenko G, Dybal J, Meszaroova J K, Sedlakova Z and Bleha M 2002 J. Chromatogr. A 954 115

    Article  CAS  Google Scholar 

  44. Svensson B, Pedersen T G, Svendsen I B, Sakai T and Ottesen M 1982 Carlsberg Res. Commun. 47 55

    Article  CAS  Google Scholar 

  45. Çimen D and Denizli A 2012 Colloids Surf. B: Biointerfaces 93 29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Aktaş Uygun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evli, S., Orhan, H., Aktaş, P.S. et al. Metal-chelated cryogels for amyloglucosidase adsorption: application for continuous starch hydrolysis. Bull Mater Sci 41, 140 (2018). https://doi.org/10.1007/s12034-018-1660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1660-9

Keywords

Navigation