Bulletin of Materials Science

, 41:144 | Cite as

Synthesis and characterization of silver-loaded mesoporous alumina antibacterial agents by hydrothermal and adsorption methods

  • Huajun ChenEmail author
  • Gangbin Yang
  • Wuxiu Ding


In view of the compatibility between carriers of antimicrobial agents and ceramic glaze, mesoporous alumina was employed as the carrier of silver ions and silver-loaded mesoporous alumina was synthesized by hydrothermal and adsorption methods. The liquid medium microdilution method and the spread plate methods were studied to evaluate antimicrobial efficiency of silver-loaded mesoporous alumina. \(\hbox {N}_{2}\) adsorption/desorption, HRTEM images and low-angle X-ray diffraction experiment prove the existence of fine mesoporous structure of mesoporous alumina and silver-loaded mesoporous alumina. The chelation of ammonia can improve the adsorption capacity of silver nitrate on mesoporous alumina and adsorption capacity increases by 18 times in the presence of ammonia. The adsorption behaviour of silver nitrate can be described by a multilayer adsorption isotherm of BET and the adsorption principle of silver nitrate on mesoporous alumina is multilayer adsorption in the presence of ammonia. The surface area, pore volume and pore-size distribution of silver-loaded mesoporous alumina are obviously smaller than those of mesoporous alumina due to the blockage of channel by silver-ammonia complex. The antibacterial test results indicate that silver-loaded mesoporous alumina have favourable antibiotic property and MIC \(\le \) 240 \(\upmu \hbox {g}\) \(\hbox {ml}^{-1}\) against Escherichia coli, Staphylococcus aureus and Salmonella. The diameter of inhibition zone of silver-loaded mesoporous alumina is 26 mm against Escherichia coli, 24 mm against Staphylococcus aureus and 22 mm against Salmonella enterica.


Mesoporous alumina adsorption BET silver antimicrobial 



We are greatly indebted to the National Natural Science Foundation of China for the financial support (Project no. 51279073).


  1. 1.
    Alfenas C D S, Ricci G P, de Faria E H, Saltarelli M, de Lima O J, da Rocha Z N et al 2011 J. Mol. Catal. A: Chem. 338 65Google Scholar
  2. 2.
    Allion-Maurer A, Saulou-Bérion C, Briandet R, Zanna S, Lebleu N, Marcus P et al 2015 Surf. Coat. Technol. 281 1CrossRefGoogle Scholar
  3. 3.
    Amarjargal A, Tijing L D, Im I T and Kim C S 2013 Chem. Eng. J. 226 243CrossRefGoogle Scholar
  4. 4.
    Liu Y, Jordan R G and Qiu S L 1994 Phys. Rev. B 49 4478CrossRefGoogle Scholar
  5. 5.
    Ashraf S, Chatha M A, Ejaz W, Janjua H A and Hussain I 2014 Nanoscale Res. Lett. 9 1CrossRefGoogle Scholar
  6. 6.
    Bykkam S, Narsingam S, Ahmadipour M, Dayakar T, Venkateswara Rao K, Shilpa Chakra C et al 2015 Superlattice Microstruct. 83 776CrossRefGoogle Scholar
  7. 7.
    Cao G F, Sun Y, Chen J G, Song L P, Jiang J Q, Liu Z T et al 2014 Applied. Clay Sci. 9394 102CrossRefGoogle Scholar
  8. 8.
    Chen H, He Y Y, Lin M H, Lin S R, Chang T W, Lin C F et al 2016 Ceram. Int. 42 3424CrossRefGoogle Scholar
  9. 9.
    Chen X, Chen F, Feng X-P and Zhu Y-J 2015 J. Control. Release 213 e115CrossRefGoogle Scholar
  10. 10.
    Dai G, Yu A, Cai X, Shi Q, Ouyang Y and Tan S 2012 J. Rare Earth 30 820CrossRefGoogle Scholar
  11. 11.
    Giraldo L F, Camilo P and Kyu T 2016 Curr. Opin. Chem. Eng. 11 7CrossRefGoogle Scholar
  12. 12.
    Li P, Zhang X, Xu R, Wang W, Liu X, Yeung K W K et al 2013 Surf. Coat. Technol. 232 370CrossRefGoogle Scholar
  13. 13.
    Hou X, Ma H, Liu F, Deng J, Ai Y, Zhao X et al 2015 J. Hazard. Mater. 299 59CrossRefGoogle Scholar
  14. 14.
    Hundley A, Pillai S, Bell C, Vig K, Miller M, Ranagari V et al 2011 Biophys. J. 100 487aCrossRefGoogle Scholar
  15. 15.
    Kim B-J and Park S-J 2008 J. Colloid Interface Sci. 325 297CrossRefGoogle Scholar
  16. 16.
    Koizhaiganova M, Yaşa I and Gülümser G 2015 Int. Biodeter. Biodegr. 105 262CrossRefGoogle Scholar
  17. 17.
    Li W-H and Yang N 2016 Mater. Lett. 162 157CrossRefGoogle Scholar
  18. 18.
    Ni S, Li X, Yang P, Ni S, Hong F and Webster T J 2016 Mater. Sci. Eng.: C 58 700CrossRefGoogle Scholar
  19. 19.
    Ohira T and Yamamoto O 2013 Chem. Eng. Res. Des. 91 1055CrossRefGoogle Scholar
  20. 20.
    Park S H, Ko Y S, Park S J, Lee J S, Cho J, Baek K Y et al 2016 J. Membr. Sci. 499 80CrossRefGoogle Scholar
  21. 21.
    Petkova P, Francesko A, Perelshtein I, Gedanken A and Tzanov T 2016 Ultrason. Sonochem. 29 244CrossRefGoogle Scholar
  22. 22.
    Chen H J and Wan L 2013 Asian J. Chem. 25 10315CrossRefGoogle Scholar
  23. 23.
    Chen H, Xu F, Xue D, Yang Y and Zhang Q 2012 Acta Chim. Sin. 70 1362CrossRefGoogle Scholar
  24. 24.
    Xu F-Q, Chen H-J and Ding W-X 2013 Chinese J. Inorg. Chem. 29 2582Google Scholar
  25. 25.
    Chen H, Wang R, Ding W and Li D 2014 Acta Mat. Compos. Sin. 31 845Google Scholar
  26. 26.
    Chen H, Yang G, Ding W and Li D 2013 J. Chin. Ceram. Soc. 41 1163Google Scholar
  27. 27.
    Zhu S, Huang R, Hong M, Jiang Y, Hu Z, Liu C et al 2009 Eur. J. Pharm. Sci. 37 573CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Environment and ChemistryLuoyang Institute of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations