Skip to main content
Log in

Sn-adopted fullerene \((\hbox {C}_{60})\) nanocage as acceptable catalyst for silicon monoxide oxidation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, the discovery of metal catalysts for the oxidation of silicon monoxide (SiO) has become extremely important. In first step, the Sn adoption of fullerene (\(\hbox {C}_{60})\) was investigated and then activation of surface of \(\hbox {Sn-C}_{60}\) via \(\hbox {O}_{2}\) molecule was examined. In second step, the SiO oxidation on surface of \(\hbox {Sn-C}_{60}\) via Langmuir Hinshelwood (LH) and Eley Rideal (ER) mechanisms was investigated. Results show that \(\hbox {O}_{2}\hbox {-Sn-C}_{60}\) can oxidize the SiO molecule via \(\hbox {Sn-C}_{60}\hbox {-O-O}^{*} + \hbox {SiO}\rightarrow \hbox {Sn-C}_{60}\hbox {-O-O}^{*}\hbox {-SiO} \rightarrow \hbox {Sn-C}_{60}\hbox {-O}^{*} + \hbox {SiO}_{2}\) and \(\hbox {Sn-C}_{60}\hbox {-O}^{*} + \hbox {SiO}\rightarrow \hbox {Sn-C}_{60} + \hbox {SiO}_{2}\) reactions. Results show that SiO oxidation via the LH mechanism has lower energy barrier than ER mechanism. Finally, \(\hbox {Sn-C}_{60}\) is an acceptable catalyst with high performance for SiO oxidation in normal temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fu Q, Gu X K, Chen L, Wang Z and Zhang H 2010 Science 328 1141

    Article  CAS  Google Scholar 

  2. Royer S and Duprez D 2011 Chem. Cat. Chem. 3 24

    CAS  Google Scholar 

  3. Afshar A, Salami Hosseini M and Behzadfar E 2014 Sci. Iran Trans. C 21 2107

    Google Scholar 

  4. Hendriksen B and Frenken J 2002 Phys. Rev. Lett. 89 046101

    Article  CAS  Google Scholar 

  5. Eichler A 2002 Surf. Sci. 498 314

    Article  CAS  Google Scholar 

  6. Lopez N and Janssens T 2002 J. Catal. 223 232

    Article  Google Scholar 

  7. Kiani A, Haratipour P, Ahmadi M, Zare-Dorabei R and Mahmoodi A 2017 J. Water Suppl. Res. Technol. 66 239

    Article  Google Scholar 

  8. Johnson R S, De La Riva A and Ashbacher V 2013 Phys. Chem. Chem. Phys. 15 7768

    Article  CAS  Google Scholar 

  9. Su H Y, Yang M M, Bao X and Li W X 2008 J. Phys. Chem. C 112 17303

    Article  CAS  Google Scholar 

  10. Parsaee Z, Haratipour P, Janghorban Lariche M and Vojood A 2018 Ultrason. Sonochem. 41 337

    Article  CAS  Google Scholar 

  11. Piccinin S and Stamatakis M 2014 ACS Catal. 4 2143

    Article  CAS  Google Scholar 

  12. Liu W, Zhu Y, Lian J and Jiang Q 2007 J. Phys. Chem. C 111 1005

    Article  CAS  Google Scholar 

  13. Liu D J 2007 J. Phys. Chem. C 111 14698

    Article  CAS  Google Scholar 

  14. Wallace W T and Whetten R L 2002 J. Am. Chem. Soc. 124 7499

    Article  CAS  Google Scholar 

  15. Baghban A, Sasanipour J, Haratipour P, Alizad M and Vafaee Ayouri M 2017 Chem. Eng. Res. Des. 126 67

    Article  CAS  Google Scholar 

  16. Du J, Wu G and Wan J 2010 J. Phys. Chem. A 114 10508

    Article  CAS  Google Scholar 

  17. Najafi M, Najafi M and Najafi H 2013 J. Theor. Comput. Chem. 12 1250116

    Article  Google Scholar 

  18. Gong X Q, Liu Z P, Raval R and Hu P 2004 J. Am. Chem. Soc. 126 8

    Article  CAS  Google Scholar 

  19. Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201

    Article  CAS  Google Scholar 

  20. Kan E, Li Z and Yang J 2008 Nano 3 433

    Article  CAS  Google Scholar 

  21. Ci L, Xu Z, Wang L, Gao W and Ding F 2008 Nano Res. 1 116

    Article  CAS  Google Scholar 

  22. Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    Article  CAS  Google Scholar 

  23. Novoselov K S, Geim A K and Morozov S 2004 Science 306 666

    Article  CAS  Google Scholar 

  24. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  25. Morozov S, Novoselov K and Katsnelson M 2008 Phys. Rev. Lett. 100 016602

    Article  CAS  Google Scholar 

  26. Geim A K 2009 Science 324 1530

    Article  CAS  Google Scholar 

  27. Ratinac K R, Yang W, Ringer S P and Braet F 2010 Environ. Sci. Technol. 44 1167

    Article  CAS  Google Scholar 

  28. Hornes A and Hungria A B 2010 J. Am. Chem. Soc. 132 34

    Article  CAS  Google Scholar 

  29. Hu X, Wu Y and Zhang Z 2012 J. Mater. Chem. 22 15198

    Article  CAS  Google Scholar 

  30. Tang Y, Dai X, Yang Z, Liu Z, Pan L, Ma D et al 2014 Carbon 71 139

    Article  CAS  Google Scholar 

  31. Li Y, Zhou Z, Yu G, Chen W and Chen Z 2010 J. Phys. Chem. C 114 6250

    Article  CAS  Google Scholar 

  32. Song E H, Wen Z and Jiang Q 2011 J. Phys. Chem. C 115 3678

    Article  CAS  Google Scholar 

  33. Tang Y, Yang Z and Dai X 2012 Phys. Chem. Chem. Phys. 14 16566

    Article  CAS  Google Scholar 

  34. Tang Y, Liu Z, Dai X, Yang Z, Chen W and Lu Z 2014 Appl. Surf. Sci. 308 402

    Article  CAS  Google Scholar 

  35. Lin S, Ye X and Huang J 2015 Phys. Chem. Chem. Phys. 17 888

    Article  CAS  Google Scholar 

  36. Tawfik S, Cui X Y, Carter D J and Stampfl C 2015 Phys. Chem. Chem. Phys. 17 6925

    Article  Google Scholar 

  37. Davies A G 2004 Org. Chem. 23 5007

    Google Scholar 

  38. Song H, Zhang L, He C, Qu Y, Tian Y and Lv Y 2011 J. Mater. Chem. 21 5972

    Article  CAS  Google Scholar 

  39. Zhou Q, Wang C, Fu Z, Tang Y and Zhang H 2014 Comput. Mater. Sci. 83 398

    Article  CAS  Google Scholar 

  40. Krasheninnikov A V, Lehtinen P O and Foster A S 2009 Phys. Rev. Lett. 102 34

    Google Scholar 

  41. Li F, Zhao J and Chen Z 2012 J. Phys. Chem. C 116 2507

    Article  CAS  Google Scholar 

  42. Wang X, Li X, Zhang L, Yoon Y and Weber P K 2009 Science 324 768

    Article  CAS  Google Scholar 

  43. Reddy A L M, Srivastava A, Gowda S R and Gullapalli H 2010 ACS Nano 4 6337

    Article  CAS  Google Scholar 

  44. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  45. Andzelm J and Kolmel C 1995 J. Chem. Phys. 103 9312

    Article  CAS  Google Scholar 

  46. Gan L H and Zhao J Q 2009 Physica E 41 1249

    Article  CAS  Google Scholar 

  47. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  48. Ma L, Zhang J M, Xu K W and Ji V 2015 Appl. Surf. Sci. 343 121

    Article  CAS  Google Scholar 

  49. Zhang T, Xue Q, Shan M and Jiao Z 2012 J. Phys. Chem. C 116 19918

    Article  CAS  Google Scholar 

  50. Wu M, Cao C and Jiang J 2012 N. J. Phys. 12 063020

    Article  Google Scholar 

  51. Asadollah A and Oliaey B 2013 Physica E 52 136

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all chemistry teachers for scientific supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, R., Abrishamifar, S.M., Kahkha, M.R.R. et al. Sn-adopted fullerene \((\hbox {C}_{60})\) nanocage as acceptable catalyst for silicon monoxide oxidation. Bull Mater Sci 41, 152 (2018). https://doi.org/10.1007/s12034-018-1652-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1652-9

Keywords

Navigation