Skip to main content
Log in

Effect of \(\hbox {Ar}^{+}\) ion implantation on the properties of electrodeposited CdTe thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Semiconducting nanomaterials of II–VI groups are the key elements of continued technological approaches made in the field of optoelectronic, magnetic and photonic devices due to their size-dependent properties. Ion beams create changes in the material along their track; this not only exhibits excellent properties but also tailors new materials. This article reports the effect of \(\hbox {Ar}^{+}\) ion implantation on the properties of cadmium telluride thin films of about 80 nm thickness. The implantation parameters were adjusted based on computer-aided learning using SRIM (stopping and range of ions in matter) software. The CdTe thin films were deposited by electrodeposition method on ITO substrate. Thin films of CdTe are exposed to \(\hbox {Ar}^{+}\) ions with different fluencies of \(1 \times 10^{15}\), \(5 \times 10^{15}\) and \(1 \times 10^{16} \, \hbox {ions cm}^{-2}\) at Ion Beam Centre, Kurukshetra University, Kurukshetra, India. After implantation, the films were characterized using UV–visible spectroscopy, photoluminescence (PL) and a four-probe set-up with a programmable current–voltage (IV) source metre. The scanning electron microscopy of pristine film showed smooth and uniform growth of sphere-shaped grains on substrate surface. From optical studies, the values of optical band gap for as-deposited and argon-ion-implanted thin films were calculated. It was found that values of optical band gap decreased with the increase in fluence of ion beam. From PL studies it was found that the intensity got increased with ion fluence. A considerable increase in current was noticed from IV measurements with ion fluence after implantation. Different properties of pre- and post-implanted thin films are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Razykov T M, Karazhanov S Z, Leiderman A Y, Khusainova N F and Kouchkarov K 2006 Sol. Energy Mater. Sol. Cells 90 2255

    Article  CAS  Google Scholar 

  2. Afzaal M and O Brien P 2006 J. Mater. Chem. 16 1597

    Article  CAS  Google Scholar 

  3. Şişman İ and Demir Ü 2011 J. Electroanal. 651 222

    Article  Google Scholar 

  4. Mathew X, Enriquez J P, Romeo A and Tiwari A N 2004 Sol. Energy 77 831

    Article  CAS  Google Scholar 

  5. Chi K, Li Q, Meng X, Liu L and Yang H 2017 J. Mater. Sci. 52 10431

    Article  CAS  Google Scholar 

  6. Al-Ghamdi A A, Khan S A, Nagat A and El-Sadek M A 2010 Opt. Laser Technol. 42 1181

    Article  CAS  Google Scholar 

  7. Shenouda A Y, Rashad M M and Chow L 2013 J. Alloys Compd. 563 39

    Article  CAS  Google Scholar 

  8. Pdvdariya S and Nainkorn 2018 J. Miner. Met. Mater. Soc. 180 735

  9. Ede A M D, Morton E J and DeAntonis P 2001 Nucl. Instrum. Methods A 458 7

    Article  CAS  Google Scholar 

  10. Duffy N W, Peter L M, Wang R L, Lane D W and Rogers K D 2000 Electrochim. Acta 45 3355

    Article  CAS  Google Scholar 

  11. Cruz L R, Pinheiro W A, Medeiro R A, Ferreira C L, Dhere R G and Duenow J N 2013 Vacuum 87 45

    Article  CAS  Google Scholar 

  12. Rohatgi A, Ringel S A, Sudharsanan R, Meyers P V, Liu C H and Ramanathan V 1989 Sol. Cells 27 219

    Article  CAS  Google Scholar 

  13. Bicknell R N, Giles N C and Schetzina J F 1986 Appl. Phys. Lett. 49 1095

    Article  CAS  Google Scholar 

  14. Rusu G G, Rusu M and Girtan M 2007 Vacuum 81 1476

    Article  CAS  Google Scholar 

  15. Li Q, Chi K, Mu Y, Zhang W, Yang H, Fu W et al 2014 Mater. Lett. 117 225

    Article  CAS  Google Scholar 

  16. Sites J and Pan J 2007 Thin Solid Films 515 6099

    Article  CAS  Google Scholar 

  17. Wei S H and Zhang S B 2002 Phys. Rev. B 66 155211

    Article  Google Scholar 

  18. Kraft C, Brömel A, Schönherr S, Hädrich M, Reislöhner U, Schley P et al 2011 Thin Solid Films 519 7153

    Article  CAS  Google Scholar 

  19. Mohanty T, Dhounsi S, Kumar P, Tripathi A and Kanjilal D 2009 Surf. Coat. Technol. 203 2410

    Article  CAS  Google Scholar 

  20. Popović M, Novaković M, Mitrić M, Zhang K and Bibić N 2015 Int. J. Refract. Met. Hard Mater. 48 318

    Article  Google Scholar 

  21. Keshri S, Kumar A and Kabiraj D 2012 Thin Solid Films 526 50

    Article  CAS  Google Scholar 

  22. Shanmugan S and Mutharasu D 2010 Mater. Sci. Semicond. Process. 13 298

    Article  CAS  Google Scholar 

  23. Senthil K, Mangalaraj D, Narayandass S K, Hong B, Roh Y, Park C S et al 2002 Semicond. Sci. Technol. 17 97

    Article  CAS  Google Scholar 

  24. Bolse W 2006 Nucl. Instrum. Methods 244 8

    Article  CAS  Google Scholar 

  25. Chauhan K R, Burgess I J, Chang G S and Mukhopadhyay I 2014 J. Electroanal. 713 70

    Article  CAS  Google Scholar 

  26. Shenouda A Y and El Sayed M 2015 Ain Shams Eng. J. 6 341

    Article  Google Scholar 

  27. Luo H, Ma L G, Xie W M, Wei Z L, Gao K G, Zhang F M et al 2016 Appl. Phys. A 122 444

    Article  Google Scholar 

  28. Cullity B D and Stock S R 2001 Elements of X-ray diffraction 3rd edn (New Jersey: Prentice-Hall) p 167

    Google Scholar 

  29. Ding C, Ming Z, Li B, Feng L and Wu J 2013 Mater. Sci. Eng. B 178 801

    Article  CAS  Google Scholar 

  30. J Tauc and Menth A 1972 J. Non-Cryst. Solids 8 569

    Article  Google Scholar 

  31. Lalitha S, Sathyamoorthy R, Senthilarasu S, Subbarayan A and Natarajan K 2004 Sol. Energy Mater. Sol. Cells 82 187

    Article  CAS  Google Scholar 

  32. Amin G A, El-Sayed S M, Saad H M, Hafez F M and Abd-El-Rahman M 2007 Radiat. Meas. 42 400

    Article  CAS  Google Scholar 

  33. Parikh N R, Thompson D A and Carpenter G J C 1986 Radiat. Eff. 98 289

    Article  CAS  Google Scholar 

  34. Novaković M, Popović M, Zhang K, Rakočević Z and Bibić N 2016 Opt. Mater. 62 57

    Article  Google Scholar 

  35. Orhan E, Anicete-Santos M, Maurera M A, Pontes F M, Paiva-Santos C O, Souza A G et al 2005 Chem. Phys. 312 1

    Article  CAS  Google Scholar 

  36. Kannappan P, Asokan K, Krishna J B M and Dhanasekaran R 2013 J. Alloys Compd. 580 284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Ion Beam Centre, Kurukshetra University, Kurukshetra, India, for providing implantation facility for our samples. We also acknowledge Director, NIT Kurukshetra, India, for providing SEM, XRD and UV–visible spectrophotometer facilities and IV measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Chauhan, R.P. Effect of \(\hbox {Ar}^{+}\) ion implantation on the properties of electrodeposited CdTe thin films. Bull Mater Sci 41, 131 (2018). https://doi.org/10.1007/s12034-018-1649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1649-4

Keywords

Navigation