Perspective of dye-encapsulated conjugated polymer nanoparticles for potential applications

Abstract

Design of highly luminescent nanomaterials is an emerging area of research for photonic and bio-photonic applications. Nowadays, dye-encapsulated polymer nanoparticles (PNPs) are found to be very promising alternative next-generation luminescent nanomaterials because of extraordinary brightness, easy synthesis, higher photo-stability and nontoxic behaviour. Herein, we have highlighted the dynamics of the fluorophore molecules inside PNPs. Furthermore, we discuss the fundamental correlation of particle brightness with the size of the PNPs as well as population of the dye molecules inside the PNPs. Considering the resonance energy transfer process, generation of white light by varying the dye concentration and singlet oxygen generation using photosensitizer dye have been described. Finally, we discuss the importance of hybrids of conjugated PNPs for potential light harvesting systems such as photovoltaic and optoelectronic applications.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Croce R and van Amerongen H 2014 Nat. Chem. Biol. 10 492

    CAS  Article  Google Scholar 

  2. 2.

    Armaroli N and Balzani V 2007 Angew. Chem. Int. Ed. 46 52

    CAS  Article  Google Scholar 

  3. 3.

    Barber J 2009 Chem. Soc. Rev. 38 185

    CAS  Article  Google Scholar 

  4. 4.

    Lewis N S and Nocera D G 2006 Proc. Natl. Acad. Sci. USA 103 15729

    CAS  Article  Google Scholar 

  5. 5.

    Jana B, Ghosh A and Patra A 2017 J. Phys. Chem. Lett. 8 4608

    CAS  Article  Google Scholar 

  6. 6.

    Kundu S and Patra A 2017 Chem. Rev. 117 712

    CAS  Article  Google Scholar 

  7. 7.

    Bhattacharyya S and Patra A 2014 J. Photochem. Photobiol. C: Photochem. Rev. 20 51

    CAS  Article  Google Scholar 

  8. 8.

    Brabec C J 2004 Sol. Energ. Mat. Sol. Cells 83 273

    CAS  Article  Google Scholar 

  9. 9.

    Hedley G J, Ruseckas A and Samuel I D W 2017 Chem. Rev. 117 796

    CAS  Article  Google Scholar 

  10. 10.

    Barbara P F, Gesquiere A J, Park S-J and Lee Y J 2005 Acc. Chem. Res. 38 602

    CAS  Article  Google Scholar 

  11. 11.

    Hwang I and Scholes G D 2011 Chem. Mater. 23 610

    CAS  Article  Google Scholar 

  12. 12.

    Collini E and Scholes G D 2009 Science 323 369

    CAS  Article  Google Scholar 

  13. 13.

    Scholes G D and Rumbles G 2006 Nat. Mater. 5 683

    CAS  Article  Google Scholar 

  14. 14.

    Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz L M, Friend R H et al 2002 Proc. Natl. Acad. Sci. USA 99 10982

    CAS  Article  Google Scholar 

  15. 15.

    Padmanaban G and Ramakrishnan S 2000 J. Am. Chem. Soc. 122 2244

    CAS  Article  Google Scholar 

  16. 16.

    Klaerner G and Miller R D 1998 Macromolecules 31 2007

    CAS  Article  Google Scholar 

  17. 17.

    Wang F, Han M-Y, Mya K Y, Wang Y and Lai Y-H 2005 J. Am. Chem. Soc. 127 10350

    CAS  Article  Google Scholar 

  18. 18.

    Ong B S, Wu Y, Liu P and Gardner S 2005 Adv. Mater. 17 1141

    CAS  Article  Google Scholar 

  19. 19.

    Pecher J and Mecking S 2010 Chem. Rev. 110 6260

    CAS  Article  Google Scholar 

  20. 20.

    Bhattacharyya S, Paramanik B and Patra A 2011 J. Phys. Chem. C 115 20832

    CAS  Article  Google Scholar 

  21. 21.

    Bhattacharyya S, Prashanthi S, Bangal P R and Patra A 2013 J. Phys. Chem. C 117 26750

    CAS  Article  Google Scholar 

  22. 22.

    Martin C, Bhattacharyya S, Patra A and Douhal A 2014 Photochem. Photobiol. Sci. 13 1241

    CAS  Article  Google Scholar 

  23. 23.

    Kurokawa N, Yoshikawa H, Hirota N, Hyodo K and Masuhara H 2004 ChemPhysChem 5 1609

    CAS  Article  Google Scholar 

  24. 24.

    Hubbell J A and Chilkoti A 2012 Science 337 303

    Article  Google Scholar 

  25. 25.

    Jin Y, Ye F, Zeigler M, Wu C and Chiu D T 2011 ACS Nano 5 1468

    CAS  Article  Google Scholar 

  26. 26.

    Wu W C, Chen C Y, Tian Y, Jang S H, Hong Y, Liu Y et al 2010 Adv. Funct. Mater. 20 1413

    CAS  Article  Google Scholar 

  27. 27.

    Tuncel D and Demir H V 2010 Nanoscale 2 484

    CAS  Article  Google Scholar 

  28. 28.

    Tang C W, VanSlyke S A and Chen C H 1989 J. Appl. Phys. 65 3610

    CAS  Article  Google Scholar 

  29. 29.

    Gather M C, Köhnen A and Meerholz K 2011 Adv. Mater. 23 233

    CAS  Article  Google Scholar 

  30. 30.

    Park E J, Erdem T, Ibrahimova V, Nizamoglu S, Demir H V and Tuncel D 2011 ACS Nano 5 2483

    CAS  Article  Google Scholar 

  31. 31.

    Wu C, Szymanski C and McNeill J 2006 Langmuir 22 2956

    CAS  Article  Google Scholar 

  32. 32.

    Clafton S N, Beattie D A, Mierczynska-Vasilev A, Acres R G, Morgan A C and Kee T W 2010 Langmuir 26 17785

    CAS  Article  Google Scholar 

  33. 33.

    Kietzke T, Neher D, Landfester K, Montenegro R, Guntner R and Scherf U 2003 Nat. Mater. 2 408

    CAS  Article  Google Scholar 

  34. 34.

    Kietzke T, Neher D, Kumke M, Montenegro R, Landfester K and Scherf U 2004 Macromolecules 37 4882

    CAS  Article  Google Scholar 

  35. 35.

    Saikin S K, Eisfeld A, Valleau S and Aspuru-Guzik A 2013 Nanophotonics 2 21

    CAS  Article  Google Scholar 

  36. 36.

    Bodunov E N, Berberan-Santos M N and Martinho J M G 2001 Chem. Phys. Lett. 340 137

    CAS  Article  Google Scholar 

  37. 37.

    Burlatsky S F, Oshanin G S and Mogutov A V 1990 Phys. Rev. Lett. 65 3205

    CAS  Article  Google Scholar 

  38. 38.

    Ghosh A, Jana B, Chakraborty S, Maiti S, Jana B, Ghosh H N et al 2017 J. Phys. Chem. C 121 21062

    CAS  Article  Google Scholar 

  39. 39.

    Shimizu H, Yamada M, Wada R and Okabe M 2007 Polym. J. 40 33

    Article  Google Scholar 

  40. 40.

    Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nat. Phys. 6 462

    CAS  Article  Google Scholar 

  41. 41.

    Fleming G R, Schlau-Cohen G S, Amarnath K and Zaks J 2012 Faraday Discuss. 155 27

    CAS  Article  Google Scholar 

  42. 42.

    Burns A, Ow H and Wiesner U 2006 Chem. Soc. Rev. 35 1028

    CAS  Article  Google Scholar 

  43. 43.

    Larson D R, Ow H, Vishwasrao H D, Heikal A A, Wiesner U and Webb W W 2008 Chem. Mater. 20 2677

    CAS  Article  Google Scholar 

  44. 44.

    Ow H, Larson D R, Srivastava M, Baird B A, Webb W W and Wiesner U 2005 Nano Lett. 5 113

    CAS  Article  Google Scholar 

  45. 45.

    Laquai F, Park Y-S, Kim J-J and Basché T 2009 Macromol. Rapid Commun. 30 1203

    CAS  Article  Google Scholar 

  46. 46.

    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H et al 1990 Nature 347 539

    CAS  Article  Google Scholar 

  47. 47.

    Denis J-C, Schumacher S, Hedley G J, Ruseckas A, Morawska P O, Wang Y et al 2015 J. Phys. Chem. C 119 9734

    CAS  Article  Google Scholar 

  48. 48.

    Dubin F, Melet R, Barisien T, Grousson R, Legrand L, Schott M et al 2005 Nat. Phys. 2 32

    Article  Google Scholar 

  49. 49.

    Dykstra T E, Hennebicq E, Beljonne D, Gierschner J, Claudio G, Bittner E R et al 2009 J. Phys. Chem. B 113 656

    CAS  Article  Google Scholar 

  50. 50.

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer)

  51. 51.

    Bhattacharyya S, Barman M K, Baidya A and Patra A 2014 J. Phys. Chem. C 118 9733

    CAS  Article  Google Scholar 

  52. 52.

    Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L et al 2011 Nano Lett. 11 488

    CAS  Article  Google Scholar 

  53. 53.

    Haedler A T, Kreger K, Issac A, Wittmann B, Kivala M, Hammer N et al 2015 Nature 523 196

    CAS  Article  Google Scholar 

  54. 54.

    Bhattacharyya S, Jana B, Sain S, Barman M K, Pradhan S K and Patra A 2015 Small 11 6317

    CAS  Article  Google Scholar 

  55. 55.

    Bhattacharyya S, Jana B and Patra A 2015 ChemPhysChem 16 796

    CAS  Article  Google Scholar 

  56. 56.

    Jana B, Bhattacharyya S and Patra A 2016 Nanoscale 8 16034

    CAS  Article  Google Scholar 

  57. 57.

    Jana B, Bhattacharyya S and Patra A 2015 Phys. Chem. Chem. Phys. 17 15392

    CAS  Article  Google Scholar 

  58. 58.

    Ghosh A, Jana B, Maiti S, Bera R, Ghosh H N and Patra A 2017 ChemPhysChem 18 1308

    CAS  Article  Google Scholar 

  59. 59.

    Bhattacharyya S, Paramanik B, Kundu S and Patra A 2012 ChemPhysChem 13 4155

    CAS  Article  Google Scholar 

  60. 60.

    Das S, Jana B, Debnath T, Ghoshal A, Das A K and Patra A 2017 J. Phys. Chem. C 121 4050

    CAS  Article  Google Scholar 

  61. 61.

    Jana B, Ghosh A, Maiti S, Bain D, Banerjee S, Ghosh H N et al 2016 J. Phys. Chem. C 120 25142

    CAS  Article  Google Scholar 

Download references

Acknowledgements

‘DST-TRC’ is gratefully acknowledged for financial support. BJ thanks CSIR for awarding fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amitava Patra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jana, B., Bhattacharyya, S. & Patra, A. Perspective of dye-encapsulated conjugated polymer nanoparticles for potential applications. Bull Mater Sci 41, 122 (2018). https://doi.org/10.1007/s12034-018-1643-x

Download citation

Keywords

  • Polymer nanoparticles
  • energy transfer
  • charge transfer
  • confined motion
  • artificial light harvesting