Advertisement

Perspective of dye-encapsulated conjugated polymer nanoparticles for potential applications

  • Bikash Jana
  • Santanu Bhattacharyya
  • Amitava Patra
Article
  • 94 Downloads

Abstract

Design of highly luminescent nanomaterials is an emerging area of research for photonic and bio-photonic applications. Nowadays, dye-encapsulated polymer nanoparticles (PNPs) are found to be very promising alternative next-generation luminescent nanomaterials because of extraordinary brightness, easy synthesis, higher photo-stability and nontoxic behaviour. Herein, we have highlighted the dynamics of the fluorophore molecules inside PNPs. Furthermore, we discuss the fundamental correlation of particle brightness with the size of the PNPs as well as population of the dye molecules inside the PNPs. Considering the resonance energy transfer process, generation of white light by varying the dye concentration and singlet oxygen generation using photosensitizer dye have been described. Finally, we discuss the importance of hybrids of conjugated PNPs for potential light harvesting systems such as photovoltaic and optoelectronic applications.

Graphical Abstract

Keywords

Polymer nanoparticles energy transfer charge transfer confined motion artificial light harvesting 

Notes

Acknowledgements

‘DST-TRC’ is gratefully acknowledged for financial support. BJ thanks CSIR for awarding fellowship.

References

  1. 1.
    Croce R and van Amerongen H 2014 Nat. Chem. Biol. 10 492CrossRefGoogle Scholar
  2. 2.
    Armaroli N and Balzani V 2007 Angew. Chem. Int. Ed. 46 52CrossRefGoogle Scholar
  3. 3.
    Barber J 2009 Chem. Soc. Rev. 38 185CrossRefGoogle Scholar
  4. 4.
    Lewis N S and Nocera D G 2006 Proc. Natl. Acad. Sci. USA 103 15729CrossRefGoogle Scholar
  5. 5.
    Jana B, Ghosh A and Patra A 2017 J. Phys. Chem. Lett. 8 4608CrossRefGoogle Scholar
  6. 6.
    Kundu S and Patra A 2017 Chem. Rev. 117 712CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya S and Patra A 2014 J. Photochem. Photobiol. C: Photochem. Rev. 20 51CrossRefGoogle Scholar
  8. 8.
    Brabec C J 2004 Sol. Energ. Mat. Sol. Cells 83 273CrossRefGoogle Scholar
  9. 9.
    Hedley G J, Ruseckas A and Samuel I D W 2017 Chem. Rev. 117 796CrossRefGoogle Scholar
  10. 10.
    Barbara P F, Gesquiere A J, Park S-J and Lee Y J 2005 Acc. Chem. Res. 38 602CrossRefGoogle Scholar
  11. 11.
    Hwang I and Scholes G D 2011 Chem. Mater. 23 610CrossRefGoogle Scholar
  12. 12.
    Collini E and Scholes G D 2009 Science 323 369CrossRefGoogle Scholar
  13. 13.
    Scholes G D and Rumbles G 2006 Nat. Mater. 5 683CrossRefGoogle Scholar
  14. 14.
    Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz L M, Friend R H et al 2002 Proc. Natl. Acad. Sci. USA 99 10982CrossRefGoogle Scholar
  15. 15.
    Padmanaban G and Ramakrishnan S 2000 J. Am. Chem. Soc. 122 2244CrossRefGoogle Scholar
  16. 16.
    Klaerner G and Miller R D 1998 Macromolecules 31 2007CrossRefGoogle Scholar
  17. 17.
    Wang F, Han M-Y, Mya K Y, Wang Y and Lai Y-H 2005 J. Am. Chem. Soc. 127 10350CrossRefGoogle Scholar
  18. 18.
    Ong B S, Wu Y, Liu P and Gardner S 2005 Adv. Mater. 17 1141CrossRefGoogle Scholar
  19. 19.
    Pecher J and Mecking S 2010 Chem. Rev. 110 6260CrossRefGoogle Scholar
  20. 20.
    Bhattacharyya S, Paramanik B and Patra A 2011 J. Phys. Chem. C 115 20832CrossRefGoogle Scholar
  21. 21.
    Bhattacharyya S, Prashanthi S, Bangal P R and Patra A 2013 J. Phys. Chem. C 117 26750CrossRefGoogle Scholar
  22. 22.
    Martin C, Bhattacharyya S, Patra A and Douhal A 2014 Photochem. Photobiol. Sci. 13 1241CrossRefGoogle Scholar
  23. 23.
    Kurokawa N, Yoshikawa H, Hirota N, Hyodo K and Masuhara H 2004 ChemPhysChem 5 1609CrossRefGoogle Scholar
  24. 24.
    Hubbell J A and Chilkoti A 2012 Science 337 303CrossRefGoogle Scholar
  25. 25.
    Jin Y, Ye F, Zeigler M, Wu C and Chiu D T 2011 ACS Nano 5 1468CrossRefGoogle Scholar
  26. 26.
    Wu W C, Chen C Y, Tian Y, Jang S H, Hong Y, Liu Y et al 2010 Adv. Funct. Mater. 20 1413CrossRefGoogle Scholar
  27. 27.
    Tuncel D and Demir H V 2010 Nanoscale 2 484CrossRefGoogle Scholar
  28. 28.
    Tang C W, VanSlyke S A and Chen C H 1989 J. Appl. Phys. 65 3610CrossRefGoogle Scholar
  29. 29.
    Gather M C, Köhnen A and Meerholz K 2011 Adv. Mater. 23 233CrossRefGoogle Scholar
  30. 30.
    Park E J, Erdem T, Ibrahimova V, Nizamoglu S, Demir H V and Tuncel D 2011 ACS Nano 5 2483CrossRefGoogle Scholar
  31. 31.
    Wu C, Szymanski C and McNeill J 2006 Langmuir 22 2956CrossRefGoogle Scholar
  32. 32.
    Clafton S N, Beattie D A, Mierczynska-Vasilev A, Acres R G, Morgan A C and Kee T W 2010 Langmuir 26 17785CrossRefGoogle Scholar
  33. 33.
    Kietzke T, Neher D, Landfester K, Montenegro R, Guntner R and Scherf U 2003 Nat. Mater. 2 408CrossRefGoogle Scholar
  34. 34.
    Kietzke T, Neher D, Kumke M, Montenegro R, Landfester K and Scherf U 2004 Macromolecules 37 4882CrossRefGoogle Scholar
  35. 35.
    Saikin S K, Eisfeld A, Valleau S and Aspuru-Guzik A 2013 Nanophotonics 2 21CrossRefGoogle Scholar
  36. 36.
    Bodunov E N, Berberan-Santos M N and Martinho J M G 2001 Chem. Phys. Lett. 340 137CrossRefGoogle Scholar
  37. 37.
    Burlatsky S F, Oshanin G S and Mogutov A V 1990 Phys. Rev. Lett. 65 3205CrossRefGoogle Scholar
  38. 38.
    Ghosh A, Jana B, Chakraborty S, Maiti S, Jana B, Ghosh H N et al 2017 J. Phys. Chem. C 121 21062CrossRefGoogle Scholar
  39. 39.
    Shimizu H, Yamada M, Wada R and Okabe M 2007 Polym. J. 40 33CrossRefGoogle Scholar
  40. 40.
    Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nat. Phys. 6 462CrossRefGoogle Scholar
  41. 41.
    Fleming G R, Schlau-Cohen G S, Amarnath K and Zaks J 2012 Faraday Discuss. 155 27CrossRefGoogle Scholar
  42. 42.
    Burns A, Ow H and Wiesner U 2006 Chem. Soc. Rev. 35 1028CrossRefGoogle Scholar
  43. 43.
    Larson D R, Ow H, Vishwasrao H D, Heikal A A, Wiesner U and Webb W W 2008 Chem. Mater. 20 2677CrossRefGoogle Scholar
  44. 44.
    Ow H, Larson D R, Srivastava M, Baird B A, Webb W W and Wiesner U 2005 Nano Lett. 5 113CrossRefGoogle Scholar
  45. 45.
    Laquai F, Park Y-S, Kim J-J and Basché T 2009 Macromol. Rapid Commun. 30 1203CrossRefGoogle Scholar
  46. 46.
    Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H et al 1990 Nature 347 539CrossRefGoogle Scholar
  47. 47.
    Denis J-C, Schumacher S, Hedley G J, Ruseckas A, Morawska P O, Wang Y et al 2015 J. Phys. Chem. C 119 9734CrossRefGoogle Scholar
  48. 48.
    Dubin F, Melet R, Barisien T, Grousson R, Legrand L, Schott M et al 2005 Nat. Phys. 2 32CrossRefGoogle Scholar
  49. 49.
    Dykstra T E, Hennebicq E, Beljonne D, Gierschner J, Claudio G, Bittner E R et al 2009 J. Phys. Chem. B 113 656CrossRefGoogle Scholar
  50. 50.
    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer)Google Scholar
  51. 51.
    Bhattacharyya S, Barman M K, Baidya A and Patra A 2014 J. Phys. Chem. C 118 9733CrossRefGoogle Scholar
  52. 52.
    Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L et al 2011 Nano Lett. 11 488CrossRefGoogle Scholar
  53. 53.
    Haedler A T, Kreger K, Issac A, Wittmann B, Kivala M, Hammer N et al 2015 Nature 523 196CrossRefGoogle Scholar
  54. 54.
    Bhattacharyya S, Jana B, Sain S, Barman M K, Pradhan S K and Patra A 2015 Small 11 6317CrossRefGoogle Scholar
  55. 55.
    Bhattacharyya S, Jana B and Patra A 2015 ChemPhysChem 16 796CrossRefGoogle Scholar
  56. 56.
    Jana B, Bhattacharyya S and Patra A 2016 Nanoscale 8 16034CrossRefGoogle Scholar
  57. 57.
    Jana B, Bhattacharyya S and Patra A 2015 Phys. Chem. Chem. Phys. 17 15392CrossRefGoogle Scholar
  58. 58.
    Ghosh A, Jana B, Maiti S, Bera R, Ghosh H N and Patra A 2017 ChemPhysChem 18 1308CrossRefGoogle Scholar
  59. 59.
    Bhattacharyya S, Paramanik B, Kundu S and Patra A 2012 ChemPhysChem 13 4155CrossRefGoogle Scholar
  60. 60.
    Das S, Jana B, Debnath T, Ghoshal A, Das A K and Patra A 2017 J. Phys. Chem. C 121 4050CrossRefGoogle Scholar
  61. 61.
    Jana B, Ghosh A, Maiti S, Bain D, Banerjee S, Ghosh H N et al 2016 J. Phys. Chem. C 120 25142CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia
  2. 2.Department of Chemical ScienceIndian Institute of Science Education and Research (IISER)BerhampurIndia

Personalised recommendations