Skip to main content

Advertisement

Log in

Improving range of SPR tunability and extinction efficiency of spheroidal silver nanostructures in graphene environment

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In photovoltaics, the materials having ability to manipulate the optical fields and coupling of energy flow inside the device play a crucial role. In this article, we report the role of graphene environment on spheroid-shaped Ag nanoparticles (NPs) with various shapes and sizes. This study confirms the tunability of surface plasmon resonances (SPRs) and an enhancement in extinction efficiency, derived numerically using discrete dipole approximation (DDA). We have chosen oblate- and prolate-shaped Ag NPs for the numerical experiment and analysed their optical signatures in terms of extinction efficiency and SPR tunability against the quasi-static approximation. The excitation of longitudinal and transversal resonances was also observed because of the asymmetric shape of Ag NPs. All optical responses have been analysed by varying the effective radii and aspect ratio of Ag NPs, and the thickness of graphene monolayer (from 0.1 to 0.5 nm). Tunability of longitudinal resonances has been observed in the 600–833 nm wavelength region, while for transversal resonances, the tunability is in the 450–505 nm wavelength range. The results represent the effect of graphene environment on the tunability of SPRs with enhanced extinction efficiency. This study could lead to the development of a photovoltaic device with wide range of tunability and enhanced efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atwater H A and Polman A 2010 Nat. Mater. 9 205

    Article  CAS  Google Scholar 

  2. Catchpole K R and Polman A 2008 Appl. Phys. Lett. 93 191113

    Article  Google Scholar 

  3. Nakayama K, Tanabe K and Atwater H A 2008 Appl. Phys. Lett. 93 121904

    Article  Google Scholar 

  4. Kim S K et al. 2014 ACS Nano 8 3707

    Article  CAS  Google Scholar 

  5. Bermel P, Luo C, Zeng L, Kimerling L C and Joannopoulos J D 2007 Opt. Express 15 16986

    Article  CAS  Google Scholar 

  6. Hideyuki I, Koichiro T, Ichiro T, Toshiaki H and Hiroki N 2000 Jpn. J. Appl. Phys. 39 5132

    Article  Google Scholar 

  7. Ditlbacher H, Krenn J R, Lamprecht B, Leitner A and Aussenegg F R 2000 Opt. Lett. 25 563

    Article  CAS  Google Scholar 

  8. Juan M L, Righini M and Quidant R 2011 Nat. Photon. 5 349

    Article  CAS  Google Scholar 

  9. Liang Z, Sun J, Jiang Y, Jiang L and Chen X 2014 Plasmonics 9 859

    Article  Google Scholar 

  10. Nie S and Emory S R 1997 Science 275 1102

    Article  CAS  Google Scholar 

  11. Noguez C 2007 J. Phys. Chem. C 111 3806

    Article  CAS  Google Scholar 

  12. Amendola V, Bakr O M and Stellacci F 2010 Plasmonics 5 85

    Article  CAS  Google Scholar 

  13. Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668

    Article  CAS  Google Scholar 

  14. Koppens F H L, Chang D E and García de Abajo F J 2011 Nano Lett. 11 3370

    Article  CAS  Google Scholar 

  15. Alsawafta M, Wahbeh M and Truong V V 2012 J. Nanomater. 2012 10

    Google Scholar 

  16. Grand J et al. 2006 Plasmonics 1 135

    Article  CAS  Google Scholar 

  17. Bhardwaj S, Pathak N K, Ji A, Uma R and Sharma R P 2017 Plasmonics 12 193

    Article  CAS  Google Scholar 

  18. Bhardwaj S, Uma R and Sharma R P 2016 Plasmonics 12 961

    Article  Google Scholar 

  19. Grigorenko A N, Polini M and Novoselov K S 2012 NatPhoton. 6 749

    Article  CAS  Google Scholar 

  20. Jablan M, Soljačić M and Buljan H 2013 Proc. IEEE 101 1689

    Article  CAS  Google Scholar 

  21. Lu H, Cumming B P and Gu M 2015 Opt. Lett. 40 3647

    Article  CAS  Google Scholar 

  22. Novoselov K S et al 2005 Nature 438 197

    Article  CAS  Google Scholar 

  23. Palik E D 1998 Handbook of optical constants of solids (San Diego: Academic)

    Chapter  Google Scholar 

  24. Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370

    Article  CAS  Google Scholar 

  25. Sosa I O, Noguez C and Barrera R G 2003 J. Phys. Chem. B 107 6269

    Article  CAS  Google Scholar 

  26. Draine B T and Flatau P J 2008 J. Opt. Soc. Am. A 25 2693

    Article  Google Scholar 

  27. Draine B T and Flatau P J 2013 ArXiv preprint arXiv:1305.6497

  28. Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    Article  Google Scholar 

  29. Bohren C F and Huffman D R 2008 Absorption and scattering of light by small particles (Weinheim, Germany: John Wiley & Sons)

    Google Scholar 

  30. Zhao B, Zhao J M and Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    Article  Google Scholar 

  31. Wang B, Zhang X, Yuan X and Teng J 2012 Appl. Phys. Lett. 100 131111

    Article  Google Scholar 

  32. García M A 2011 J. Phys. D: Appl. Phys. 44 283001

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Shivani Bhardwaj) is thankful to MNRE, India, for providing the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Sharma, R.P. Improving range of SPR tunability and extinction efficiency of spheroidal silver nanostructures in graphene environment. Bull Mater Sci 41, 123 (2018). https://doi.org/10.1007/s12034-018-1637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1637-8

Keywords

Navigation