Skip to main content
Log in

Metallophthalocyanine-nanofibre-based electrodes for electrochemical sensing of biomolecules

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Metal phthalocyanines, possessing rich redox chemistry due to the presence of the central metal cation and pyrrolic nitrogen atoms of the macrocycle, are explored as electrochemical sensors. Nickel phthalocyanine nanofibres (NiPc NF) prepared by a simple chemical route are coated on a pencil graphite rod and the electrocatalytic performance of NiPc NF electrode is investigated for quantitative detection of ascorbic acid (AA) in 0.2 M phosphate buffer solution. The performance of NiPc NFs is shown to be superior to that of commercial NiPc and is attributed to the high electrochemically active surface area available for fibres. The electrode exhibits linearity for the detection over a wide concentration range of AA from \(5.5\,\upmu \hbox {M}\) to 5.2 mM. The detection limit for AA sensing with NiPc-NF-modified electrode is \(1.5\,\upmu \hbox {M}\). The higher performance of NiPc fibres due to its nanostructure morphology may be utilized for the quantitative detection of other biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Madhuri K P, Kaur P, Ali M E and John N S 2017 J. Phys. Chem. C 121 9249

    Article  CAS  Google Scholar 

  2. Vasudevan P, Phougat N and Shukla A K 1996 Appl. Organomet. Chem. 10 591

    Article  CAS  Google Scholar 

  3. Chidembo A T, Ozoemena K I, Agboola B O, Gupta V, Wildgoose G G and Compton R G 2010 Energy Environ. Sci. 3 228

    Article  CAS  Google Scholar 

  4. Mani V, Devasenathipathy R, Chen S M, Gu J A and Huang S T 2015 Renew. Energy 74 867

    Article  CAS  Google Scholar 

  5. Mori S, Nagata M, Nakahata Y, Yasuta K, Goto R, Kimura M et al 2010 J. Am. Chem. Soc. 132 4054

    Article  CAS  Google Scholar 

  6. Yuan Y, Ahmed J and Kim S 2011 J. Power Sources 196 1103

    Article  CAS  Google Scholar 

  7. Kottaichamy A R, Kotresh H M N, Devendrachari M C, Thimmappa R, Paswan B, Tiwari O et al 2015 J. Phys. Chem. C 119 28276

    Article  CAS  Google Scholar 

  8. Wu H, Zeng M, Zhu X, Tian C, Mei B, Song Y et al 2018 ChemElectroChem 5 1

    Article  Google Scholar 

  9. Fadlallah M M, Eckern U, Romero A H and Schwingenschlogi U 2016 New J. Phys. 18 013003

    Article  Google Scholar 

  10. Saito Y, Higuchi T, Sugimori H and Yabu H 2015 ChemNanoMat 1 92

    Article  CAS  Google Scholar 

  11. Mu J, Shao C, Guo Z, Zhang M, Zhang Z, Zhang P et al 2011 Nanoscale 3 5126

    Article  CAS  Google Scholar 

  12. Tong W Y, Djurisic A B, Xie M H, Ng A C M, Cheung K Y, Chan W K et al 2006 J. Phys. Chem. B 110 17406

    Article  CAS  Google Scholar 

  13. Martin M G, Rodriguez-Mendez M L and de Saja J A 2010 Langmuir 26 19217

    Article  CAS  Google Scholar 

  14. Li B, Kawakami T and Hiramatsu M 2003 Appl. Surf. Sci. 210 171

    Article  CAS  Google Scholar 

  15. Madhuri K P and John N S 2018 Appl. Surf. Sci. 449 528

    Article  CAS  Google Scholar 

  16. Bramhaiah K, Pandey I, Singh V N, Kavitha C and John N S 2018 J. Nanopart. Res. 20 56

    Article  Google Scholar 

  17. Wang X, Wu W, Ju H, Zou T, Qiao Z, Gong H et al 2016 Mater. Res. Express 3 125002

    Article  Google Scholar 

  18. Barros S B A, Rahim A, Tanaka A A, Arenas L T, Landers R and Gushikem Y 2013 Electrochim. Acta 87 140

    Article  CAS  Google Scholar 

  19. Oni J, Westbroek P and Nyokong T 2003 Electroanalysis 15 847

    Article  CAS  Google Scholar 

  20. Yang G J, Xu J J, Wang K and Chen Y 2006 Electroanalysis 18 282

    Article  CAS  Google Scholar 

  21. Zuo X, Zhang H and Li N 2012 Sens. Actuators B 161 1074

    Article  CAS  Google Scholar 

  22. Ngai K S, Tan W T, Zainal Z, Zawawi R M and Zidan M 2013 Int. J. Electrochem. Sci. 8 10557

    CAS  Google Scholar 

  23. Laviron E 1979 J. Electroanal. Chem. 101 19

    Article  CAS  Google Scholar 

  24. Ruiz J J, Aldaz A and Dominguez M 1977 Can. J. Chem. 55 2799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial assistance from DST FastTrack Project No. SR/FT/CS-170/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena S John.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, K.P., John, N.S. Metallophthalocyanine-nanofibre-based electrodes for electrochemical sensing of biomolecules. Bull Mater Sci 41, 118 (2018). https://doi.org/10.1007/s12034-018-1636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1636-9

Keywords

Navigation