Microstructure and mechanical properties of carbon fibre-reinforced alumina composites fabricated from sol

  • Chaoyang Fan
  • Qingsong Ma
  • Kuanhong Zeng


Alumina matrix composites reinforced with the laminated and stitched carbon fibre cloth preform were fabricated through the infiltration–drying–heating route using the \(\hbox {Al}_{2}\hbox {O}_{3}\) sol with a high solid content as raw materials. The investigation was focussed on the characteristics of sol and the mechanical properties and high-temperature resistance of \(\hbox {C}/\hbox {Al}_{2}\hbox {O}_{3}\) composites. \({\upalpha }\hbox {-Al}_{2}\hbox {O}_{3}\) with favourable sintering activity can be obtained after heat treatment of sol at \(1200{^{\circ }}\hbox {C}\). The as-received \(\hbox {C}/\hbox {Al}_{2}\hbox {O}_{3}\) composites with a total porosity of 16.8% exhibit a flexural strength of 271.3 MPa and a notch toughness of 13.0 MPa \(\hbox {m}^{1/2}\), respectively. As a result of the evolution of interface and matrix, the flexural strength of \(\hbox {C}/\hbox {Al}_{2}\hbox {O}_{3}\) composites is decreased by 28.5% after heat treatment at \(1600{^{\circ }}\hbox {C}\) for 1 h under inert atmosphere. At the same time, fracture mode of composites is transformed from tough to brittle behaviour.


Alumina composites carbon fibre reinforcement sol mechanical properties 



This work was financially supported by the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology (Grant No. SAST2015043).


  1. 1.
    Satapathy L N and Swaroop S 2005 Bull. Mater. Sci. 28 281CrossRefGoogle Scholar
  2. 2.
    Mallik A K, Gangadharan S, Dutta S and Basu D 2010 Bull. Mater. Sci. 33  445CrossRefGoogle Scholar
  3. 3.
    Tan H B, Ma X L and Fu M X 2013 Bull. Mater. Sci. 36  153CrossRefGoogle Scholar
  4. 4.
    Zok F W 2006 J. Am. Ceram. Soc. 89  3309CrossRefGoogle Scholar
  5. 5.
    Volkmann E, Tushtev K, Koch D, Wilhelmi C, Göring J and Rezwan K 2015 Compos. Part A 68 19CrossRefGoogle Scholar
  6. 6.
    Wilshire B and Carreño F 2000 J. Eur. Ceram. Soc. 20 463CrossRefGoogle Scholar
  7. 7.
    Llorca J, Elices M and Celemin J A 1998 Acta Mater. 46 2441CrossRefGoogle Scholar
  8. 8.
    Chen Z F, Zhang L T, Cheng L F, Xu Y D and Han G F 2003 J. Inorg. Mater. 18  638 (in Chinese)Google Scholar
  9. 9.
    Colomban Ph and Wey M 1997 J. Eur. Ceram. Soc. 17  1475CrossRefGoogle Scholar
  10. 10.
    Liu H K and Lin B H 2001 Mater. Lett. 48  230CrossRefGoogle Scholar
  11. 11.
    Chen Z F, Zhang L T, Cheng L F, Xu Y D and Xiao P 2001 J. Aeronaut. Mater. 21 28 (in Chinese)Google Scholar
  12. 12.
    Xie Z F, Xiao J Y, Chen Z H, Wang X Y, Zheng W W and Jiang D Z 1998 J. Nat. Univ. Defense Technol. 20  14 (in Chinese)Google Scholar
  13. 13.
    Stoll E, Mahr P, Krüger H G, Kern H, Thomas B J C and Boccaccini A R 2006 J. Eur. Ceram. Soc. 26  1567CrossRefGoogle Scholar
  14. 14.
    Naskar M K, Chatterjee M, Dey A and Basu K 2004 Ceram. Int. 30  257CrossRefGoogle Scholar
  15. 15.
    Wang Y, Liu H T, Cheng H F and Wang J 2014 Mater. Lett. 126  236CrossRefGoogle Scholar
  16. 16.
    Wang Y, Cheng H F and Wang J 2014 Ceram. Int. 40  4707CrossRefGoogle Scholar
  17. 17.
    Wang Y, Liu H T, Cheng H F and Wang J 2013 Ceram. Int. 39  9229CrossRefGoogle Scholar
  18. 18.
    Xiang Y, Wang Q, Cao F, Ma Y W and Quan D L 2017 Ceram. Int. 43  854CrossRefGoogle Scholar
  19. 19.
    Wang Q, Cao F, Xiang Y and Peng Z H 2017 Ceram. Int. 43 884CrossRefGoogle Scholar
  20. 20.
    Liu H T, Ma Q S and Liu W D 2014 Ceram. Int. 40  7203CrossRefGoogle Scholar
  21. 21.
    Guan Z D, Zhang Z T and Jiao J S 1992 (eds) Physical properties of inorganic materials (Beijing: Tsinghua University Press) (in Chinese)Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Science and Technology on Advanced Ceramic Fibers and Composites LaboratoryNational University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations