Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation

Abstract

Calcium-doped lanthanum manganite (LCMO) powder was synthesized via hydrothermal method. The structural, morphological and optical properties of the resulting powder was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma–atomic emission spectroscopy (ICP–AES spectrometer), field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy (UV–Vis). The XRD results showed the existence of only one crystalline phase. FESEM image indicates that the LCMO sample has nanowire structure with an average diameter of \(\sim \)125 nm. The band gap energy of the sample was about 2.13 eV. The as-prepared nanowires showed sufficient visible-light photocatalytic activity for the water treatment from dyes and toxic organic materials. The photodegradation efficiency for decolourizing methylene blue solution (7 ppm) by LCMO nanowires \((0.07\hbox {g l}^{-1})\), after 360 min illumination, was about 73% with a reaction rate constant of \(0.003 \,\hbox {min}^{-1}\). The six times cycled results suggested the great long-term stability of the photocatalyst.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

References

  1. 1.

    Bradha M, Vijayaraghavan T, Suriyaraj S P, Selvakumar R and Ashok A M 2015 J. Rare Earth  33 160

    Article  Google Scholar 

  2. 2.

    Yang Y, Sun Y and Jiang Y 2006 Mater. Chem. Phys.  96 234

    Article  Google Scholar 

  3. 3.

    Chen H X, Wei Z X, Wang Y, Zeng W W and Xiao C M 2011 Mater. Chem. Phys.  130 1387

    Article  Google Scholar 

  4. 4.

    Sun M, Jiang Y, Li F, Xia M, Xue B and Liu D 2010 Mater. Trans.  51 1981

    Article  Google Scholar 

  5. 5.

    Shaikh M W, Mansuri I, Dar M A and Varshney D 2015 Mater. Sci. Semicond. Process 35 10

    Article  Google Scholar 

  6. 6.

    Culebras M, Toran R, Gomez C M and Cantarero A 2014 Nanoscale Res. Lett.  9 1

    Article  Google Scholar 

  7. 7.

    Szabo-Bardos E, Somogyi K, Toro N, Kiss G and Horvath A 2011 Appl. Catal. B Environ.  101 471

    Article  Google Scholar 

  8. 8.

    Wang S, Yun J H, Luo B, Butburee T, Peerakiatkhajohn P, Thaweesak S et al 2017 Mater. Sci. Technol. Ser.  33 1

    Article  Google Scholar 

  9. 9.

    Eskandarian M R, Choi H, Fazli M and Rasoulifard M H 2016 Chem. Eng. J.  300 414

    Article  Google Scholar 

  10. 10.

    Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Williams H S et al 2010 Nat. Mater9 559

    Article  Google Scholar 

  11. 11.

    Wei M, Wan J, Hu Z, Peng Z, Wang B and Wang H 2017 Appl. Surf. Sci.  391 267

    Article  Google Scholar 

  12. 12.

    Lorkit P, Panapoy M and Ksapabutr B 2014 Energy Proc.  56 466

    Article  Google Scholar 

  13. 13.

    Maleki M and Haghighi M 2016 J. Mol. Catal. A Chem.  424 283

    Article  Google Scholar 

  14. 14.

    Andrade G R S, Nascimento C C, Neves E C, Barbosa C D A E S, Costa L P, Barreto L S et al 2012 J. Hazard. Mater.  203–204 151

    Article  Google Scholar 

  15. 15.

    Shaterian M, Enhessari M, Rabbani D, Asghari M and Salavati-Niasari M 2014 Appl. Surf. Sci.  318 213

    Article  Google Scholar 

  16. 16.

    Fu S, Niu H, Tao Z, Song J, Mao C, Zhang S et al 2013 J. Alloys Compd576 5

    Article  Google Scholar 

  17. 17.

    Yang H, Zhang J X, Lin G J, Xian T and Jiang J L 2013 Adv. Powder Technol24 242

    Article  Google Scholar 

  18. 18.

    Sujittra D, Chunpen T, Charusporn M and Santi M 2012 J. Supercond. Nov. Magn25 2507

    Article  Google Scholar 

  19. 19.

    Soleymani M, Moheb A and Babakhani D 2011 Chem. Eng. Technol34 49

    Article  Google Scholar 

  20. 20.

    Wenwei W, Jinchao C, Xuehang W, Sen L, Kaituo W and Lin T 2013 Adv. Powder Technol24 154

    Article  Google Scholar 

  21. 21.

    Varshney D, Mansuri I, Kaurav N, Lung W Q and Kuo Y K 2012 J. Magn. Magn. Mater324 3276

    Article  Google Scholar 

  22. 22.

    Vertruyen B, Rulmont A, Cloots R, Fagnard J F, Ausloos M, Vandriessche I et al 2005 J. Mater. Sci.  40 117

    Article  Google Scholar 

  23. 23.

    Chihoub R, Amira A, Mahamdioua N, Altintas S P, Varilci A and Terzioglu C 2016 Physica B  492 11

    Article  Google Scholar 

  24. 24.

    Gao F, Lewis R A, Wang X L and Dou S X 2000 Physica C  341–348 2235

    Article  Google Scholar 

  25. 25.

    Nagabhushana B M, Chakradhar R P S, Ramesh K P, Shivakumara C and Chandrappa G T 2007 Mater. Chem. Phys102 47

    Article  Google Scholar 

  26. 26.

    Gao F, Lewis R A, Wang X L and Dou S X 2002 J. Alloys Compd347 314

    Article  Google Scholar 

  27. 27.

    Arulraj A and Rao C N R 1999 J. Solid State Chem145 557

    Article  Google Scholar 

  28. 28.

    Lavorato G C, Lima J E, Tobia D, Fiorani D, Troiani H E, Zysler R D et al 2014 J. Nanotechnol.  25 355704

    Article  Google Scholar 

  29. 29.

    Regaieg Y, Ayadi F, Monnier J, Reguer S, Koubaa M, Cheikhrouhou A et al 2014 Mater. Res. Exp.  1 046105

    Article  Google Scholar 

  30. 30.

    Teng F 2009 Solid State Sci11 1643

    Article  Google Scholar 

  31. 31.

    Deng J, Zhang L, Dai H, He H and Au C T 2009 J. Mol. Catal. A Chem299 60

    Article  Google Scholar 

  32. 32.

    Rizzuti A and Leonelli C 2009 Process. Appl. Ceram3 29

    Article  Google Scholar 

  33. 33.

    Choi S G, Lee H S, Choi H, Chung S W and Park H H 2013 Thin Solid Films  529 352

    Article  Google Scholar 

  34. 34.

    Cesaria M, Caricato A P, Leggieri G, Martino M and Maruccio G 2013 Thin Solid Films 545 592

  35. 35.

    Patra A S, Kumar N V, Barpuzary D, De M and Qureshi M 2014 Mater. Lett.  131 125

    Article  Google Scholar 

  36. 36.

    Chen M L and Oh W C 2011 Nanoscale Res. Lett6 1

    Google Scholar 

  37. 37.

    Zhou F and Zhu Y 2012 J. Adv. Ceram1 72

    Article  Google Scholar 

  38. 38.

    Dariani R S, Esmaeili A, Mortezaali A and Dehghanpour S 2015 Optik  127 7143

    Article  Google Scholar 

  39. 39.

    Ghosh T, Ullah K, Nikam V, Park C Y, Meng Z D and Oh W C 2013 Ultrason. Sonochem20 768

    Article  Google Scholar 

  40. 40.

    Soltani N, Saion E, Hussein M Z, Erfani M, Abedini A, Bahmanrokh G et al 2012 Int. J. Mol. Sci13 12242

    Article  Google Scholar 

  41. 41.

    Xu X, Lu R, Zhao X, Xu S, Lei X, Zhang F et al 2011 Appl. Catal. B  102 147

    Article  Google Scholar 

  42. 42.

    Lv J, Li D, Dai K, Liang C, Lu L, Jiang D et al 2017 Mater. Chem. Phys186 372

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M Fazli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arabi, A., Fazli, M. & Ehsani, M.H. Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation. Bull Mater Sci 41, 77 (2018). https://doi.org/10.1007/s12034-018-1590-6

Download citation

Keywords

  • Nanowires
  • hydrothermal method
  • photocatalyst
  • methylene blue