Skip to main content
Log in

Crystal structure, thermal behaviour, vibrational spectroscopy and optical properties of new compounds K\(_{2}\)Ca(HAsO\(_{4}\))\(_{2}\cdot \)2H\(_{2}\)O with kröhnkite-type chain

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The new kröhnkite compound called potassium calcium-bis-hydrogen arsenate dihydrate K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O was obtained by hydrothermal method and characterized by X-ray diffraction, infrared spectroscopy, Raman scattering, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis and optical (photoluminescence and absorption) properties. It crystallizes in the triclinic space group P\(\bar{1}\) and unit cell parameters \(a = 5.971(3)\) Å, \(b =6.634(3)\) Å, \(c = 7.856(4)\) Å, \(\alpha =104.532(9)\) \(^{\circ }\), \(\beta = 105.464(9)\) \(^{\circ }\) and \(\gamma = 109.698(9)\) \(^{\circ }\). The structure of K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O built up from this infinite, (Ca(HAsO\(_{4})_{2}\)(H\(_{2}\)O)\(_{2})^{2+}\), was oriented along an axis resulting from the association of CaO\(_{6}\) octahedra alternating with each two HAsO\(_{4}\) tetrahedra by sharing corners. Each potassium atom links two adjacent chains by three oxygen atoms of HAsO\(_{4}\) tetrahedra. TGA and DSC have shown the absence of phase transition. The existence of vibrational modes corresponding to the kröhnkite is identified by the IR and Raman spectroscopies in the frequency ranges of 400–4000 and 20–4000 cm\(^{-1}\), respectively. The photoluminescence measurement show one peak at 507 nm, which is attributed to band–band (free electron–hole transitions) and (bound electron–hole transitions) emissions within the AsO\(_{4}\) inorganic part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hawthrone F C S, Krivovichev V and Burns P C 2000 Rev. Miner. Geochem. 40 1

    Article  Google Scholar 

  2. Fleck M, Kolitsch U and Hertweck B 2002 Z. Kristallogr. 217 435

    Google Scholar 

  3. Fleck M and Kolitsch U 2003 Z. Kristallogr. 218 553

    Google Scholar 

  4. Guillem G P, Cot L, Avinens C, Norbert A and Acad C R 1970 Sci. Ser. C 270 1870

    Google Scholar 

  5. Stoilova D, Wildner M, Marinova D and Georgiev M 2008 J. Mol. Struct. 889 12

    Article  Google Scholar 

  6. Altomare A M, Burla C, Camalli M, Cascarano G L, Giacovazzo C, Guagliardi A et al 1999 SIR97 J. Appl. Crystallogr. 32 115

    Article  Google Scholar 

  7. Sheldrick G M 1997 SHELXL-97, program for crystal structure refinement (Göttingen, Germany: University of Göttingen)

    Google Scholar 

  8. Farrugia L J 1999 J. Appl. Crystallogr. 32 837

    Article  Google Scholar 

  9. Kolitsch U and Fleck M 2005 Z. Kristallogr. 220 31

    Google Scholar 

  10. Kolitsch U and Fleck M 2006 Eur. J. Miner. 18 471

    Article  Google Scholar 

  11. Baur W H 1981 Interatomic distance predictions for computer simulation of crystal structures (eds) M O’Keeffe and A Navrotsky (New York: Academic Press) p 31

  12. Brandenburg K 1998 Diamond, Version 2.0 (Bonn, Germany: Impact GbR) vol. II

  13. Ferraris G 1970 Rend. Soc. Ital. Mineral. Petrol 26 589

    Google Scholar 

  14. Nakamoto K 1986 Infrared and Raman spectra of Inorganic and coordination compounds (New York: Wiley-Interscience)

    Google Scholar 

  15. Mihajlović T, Libowitzky E and Effenberger H 2004 J. Solid State Chem. 17 3963

    Article  Google Scholar 

  16. Belhouchet M, Gargouri M, Mhiri T and Daoud A 2002 J. Phys. Chem. News 6 117

    Google Scholar 

  17. Debrus S, May M, Barycki J, Glowiak T, Barnes J A, Ratajaczak H et al 2004 J. Mol. Struct. 52 175

    Article  Google Scholar 

  18. Nailiand H and Mhiri T 2001 J. Alloys Compd. 315 143

    Article  Google Scholar 

  19. Kamoun S, Daoud A and Romain F 1991 J. Spectrochim. Acta 47 1051

    Article  Google Scholar 

  20. Philip D and Druldhas B 1990 J. Raman Spectrosc. 21 211

    Article  Google Scholar 

  21. Marchon B and Novak A 1985 J. Chem. Phys. 78 2105

    Article  Google Scholar 

  22. Ohno N and Lockwood D J 1985 J. Chem. Phys. 83 4374

    Article  Google Scholar 

  23. Choi B K and Kim J J 1985 J. Appl. Phys. 24 914

    Article  Google Scholar 

  24. Baran J 1987 J. Mol. Struct. 162 211

    Article  Google Scholar 

  25. Höppe A, Daub M and Oeckler O 2009 J. Solid State Sci. 11 1484

    Article  Google Scholar 

  26. Wojciech Suchanek L, Shuk P, Byrappa K, Richard Riman E, Kevor S, TenHuisen F et al 2002 J. Biomater. 23 699

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Boujelbene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, R., Lhoste, J., Dammak, T. et al. Crystal structure, thermal behaviour, vibrational spectroscopy and optical properties of new compounds K\(_{2}\)Ca(HAsO\(_{4}\))\(_{2}\cdot \)2H\(_{2}\)O with kröhnkite-type chain. Bull Mater Sci 41, 78 (2018). https://doi.org/10.1007/s12034-018-1581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1581-7

Keywords

Navigation