Crystal structure, thermal behaviour, vibrational spectroscopy and optical properties of new compounds K\(_{2}\)Ca(HAsO\(_{4}\))\(_{2}\cdot \)2H\(_{2}\)O with kröhnkite-type chain

  • R Ayadi
  • J Lhoste
  • T Dammak
  • I Ledoux-Rak
  • T Mhiri
  • M BoujelbeneEmail author


The new kröhnkite compound called potassium calcium-bis-hydrogen arsenate dihydrate K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O was obtained by hydrothermal method and characterized by X-ray diffraction, infrared spectroscopy, Raman scattering, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis and optical (photoluminescence and absorption) properties. It crystallizes in the triclinic space group P\(\bar{1}\) and unit cell parameters \(a = 5.971(3)\) Å, \(b =6.634(3)\) Å, \(c = 7.856(4)\) Å, \(\alpha =104.532(9)\) \(^{\circ }\), \(\beta = 105.464(9)\) \(^{\circ }\) and \(\gamma = 109.698(9)\) \(^{\circ }\). The structure of K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O built up from this infinite, (Ca(HAsO\(_{4})_{2}\)(H\(_{2}\)O)\(_{2})^{2+}\), was oriented along an axis resulting from the association of CaO\(_{6}\) octahedra alternating with each two HAsO\(_{4}\) tetrahedra by sharing corners. Each potassium atom links two adjacent chains by three oxygen atoms of HAsO\(_{4}\) tetrahedra. TGA and DSC have shown the absence of phase transition. The existence of vibrational modes corresponding to the kröhnkite is identified by the IR and Raman spectroscopies in the frequency ranges of 400–4000 and 20–4000 cm\(^{-1}\), respectively. The photoluminescence measurement show one peak at 507 nm, which is attributed to band–band (free electron–hole transitions) and (bound electron–hole transitions) emissions within the AsO\(_{4}\) inorganic part.


Kröhnkite X-ray diffraction vibrational studies thermal analysis photoluminescence absorption 


  1. 1.
    Hawthrone F C S, Krivovichev V and Burns P C 2000 Rev. Miner. Geochem. 40 1CrossRefGoogle Scholar
  2. 2.
    Fleck M, Kolitsch U and Hertweck B 2002 Z. Kristallogr. 217 435Google Scholar
  3. 3.
    Fleck M and Kolitsch U 2003 Z. Kristallogr. 218 553Google Scholar
  4. 4.
    Guillem G P, Cot L, Avinens C, Norbert A and Acad C R 1970 Sci. Ser. C 270 1870Google Scholar
  5. 5.
    Stoilova D, Wildner M, Marinova D and Georgiev M 2008 J. Mol. Struct. 889 12CrossRefGoogle Scholar
  6. 6.
    Altomare A M, Burla C, Camalli M, Cascarano G L, Giacovazzo C, Guagliardi A et al 1999 SIR97 J. Appl. Crystallogr. 32 115CrossRefGoogle Scholar
  7. 7.
    Sheldrick G M 1997 SHELXL-97, program for crystal structure refinement (Göttingen, Germany: University of Göttingen)Google Scholar
  8. 8.
    Farrugia L J 1999 J. Appl. Crystallogr. 32 837CrossRefGoogle Scholar
  9. 9.
    Kolitsch U and Fleck M 2005 Z. Kristallogr. 220 31Google Scholar
  10. 10.
    Kolitsch U and Fleck M 2006 Eur. J. Miner. 18 471CrossRefGoogle Scholar
  11. 11.
    Baur W H 1981 Interatomic distance predictions for computer simulation of crystal structures (eds) M O’Keeffe and A Navrotsky (New York: Academic Press) p 31Google Scholar
  12. 12.
    Brandenburg K 1998 Diamond, Version 2.0 (Bonn, Germany: Impact GbR) vol. IIGoogle Scholar
  13. 13.
    Ferraris G 1970 Rend. Soc. Ital. Mineral. Petrol 26 589Google Scholar
  14. 14.
    Nakamoto K 1986 Infrared and Raman spectra of Inorganic and coordination compounds (New York: Wiley-Interscience)Google Scholar
  15. 15.
    Mihajlović T, Libowitzky E and Effenberger H 2004 J. Solid State Chem. 17 3963CrossRefGoogle Scholar
  16. 16.
    Belhouchet M, Gargouri M, Mhiri T and Daoud A 2002 J. Phys. Chem. News 6 117Google Scholar
  17. 17.
    Debrus S, May M, Barycki J, Glowiak T, Barnes J A, Ratajaczak H et al 2004 J. Mol. Struct. 52 175CrossRefGoogle Scholar
  18. 18.
    Nailiand H and Mhiri T 2001 J. Alloys Compd. 315 143CrossRefGoogle Scholar
  19. 19.
    Kamoun S, Daoud A and Romain F 1991 J. Spectrochim. Acta 47 1051CrossRefGoogle Scholar
  20. 20.
    Philip D and Druldhas B 1990 J. Raman Spectrosc. 21 211CrossRefGoogle Scholar
  21. 21.
    Marchon B and Novak A 1985 J. Chem. Phys. 78 2105CrossRefGoogle Scholar
  22. 22.
    Ohno N and Lockwood D J 1985 J. Chem. Phys. 83 4374CrossRefGoogle Scholar
  23. 23.
    Choi B K and Kim J J 1985 J. Appl. Phys. 24 914CrossRefGoogle Scholar
  24. 24.
    Baran J 1987 J. Mol. Struct. 162 211CrossRefGoogle Scholar
  25. 25.
    Höppe A, Daub M and Oeckler O 2009 J. Solid State Sci. 11 1484CrossRefGoogle Scholar
  26. 26.
    Wojciech Suchanek L, Shuk P, Byrappa K, Richard Riman E, Kevor S, TenHuisen F et al 2002 J. Biomater. 23 699Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • R Ayadi
    • 1
  • J Lhoste
    • 2
  • T Dammak
    • 3
  • I Ledoux-Rak
    • 4
  • T Mhiri
    • 1
  • M Boujelbene
    • 1
    Email author
  1. 1.Laboratory Physical Chemistry of Solid State (LR11ES51), Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.IMMM-UMR 6283 CNRS, LUNAM, Faculty of Sciences and TechniquesUniversity of MaineLe Mans Cedex 9France
  3. 3.Laboratory of Physical Applied (LPA)University of SfaxSfaxTunisia
  4. 4.Molecular and Quantum Photonics Laboratory, UMR CNRS 8537Ecole Normale Supérieure de CachanCachanFrance

Personalised recommendations