Advertisement

Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity

  • Ramasubba Reddy Palem
  • Shimoga D Ganesh
  • Zuzana Kronekova
  • Monika Sláviková
  • Nabanita Saha
  • Petr Saha
Article

Abstract

The current report was intended towards comparative study of green-synthesized biogenic Rhubarb silver nanoparticles (RS-AgNPs) and chitosan crosslinked silver nanocomposites (CSHD-AgNCs). The physico-chemical characterization was done by UV–visible, FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), EDX, TGA, XRD and zeta potential (\(\zeta \)). The analysis and spectroscopic characterization was done by SEM and TEM and their results reveal that the nanoparticles are spherical in shape, with average size ranges from 5 to 50 nm, and was gathered by face centered cubic (FCC) structure throughout the polymer matrix and stable without any protecting or capping reagents over 450 days. The antimicrobial property of RS-AgNPs and CSHD-AgNCs (\(\zeta = +29.6\) and \(+\)32.8 mV) was evaluated against E. coli and S. aureus and showed an effective inhibitory property. The RS-AgNPs and CSHD-AgNCs were assessed for their anticancer activity against HeLa cell line by MTT method, and it reveals a dose–response activity, time and cell line-dependent cytotoxicity. Based on the results obtained, the RS-AgNPs exhibited higher toxicity over CSHD-AgNCs after 24 h incubation of HeLa cells with different concentrations and is negligible for the aqueous Rhubarb extract. It was concluded that the changes in anticancer activity towards HeLa cells due to biological activity of silver nanoparticles depend on their method of biosynthesis and their physico-chemical nature.

Keywords

Biogenic silver nanoparticles biopolymer nanocomposites nanoparticles stability antimicrobial activity anticancer activity 

Notes

Acknowledgements

We are grateful to the Ministry of Education, Youth and Sports of the Czech Republic—NPU Program I (LO1504) and Slovak Grant Agency VEGA for the financial support in the Project 2/0124/18. We are also thankful to Department of Material Science and Nanotechnology (IISc) Bangalore, India, for TEM analysis.

References

  1. 1.
    Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P et al 2009 Nat. Mater. 8 543CrossRefGoogle Scholar
  2. 2.
    Sharma N C, Sahi S V, Nath S, Parsons J G, Gardea-Torresdey J L and Pal T 2007 Environ. Sci. Technol. 41 5137CrossRefGoogle Scholar
  3. 3.
    Leo B F, Chen S, Kyo Y, Herpoldt K L, Terrill N J, Dunlop I E et al 2013 Environ. Sci. Technol. 47 11232CrossRefGoogle Scholar
  4. 4.
    Osman H 2014 World Appl. Sci. J. 29 592Google Scholar
  5. 5.
    Willner I, Baron R and Willner B 2006 Adv. Mater18 1109CrossRefGoogle Scholar
  6. 6.
    Jebali A, Ramezani F and Kazemi B 2011 J. Cluster Sci. 22 225CrossRefGoogle Scholar
  7. 7.
    Ramasubba Reddy P, Krishna Rao K S V, Madhusudana Rao K, Sivagangi Reddy N and Eswaramma S 2015 J. Drug Deliv. Sci. Technol. 29 181CrossRefGoogle Scholar
  8. 8.
    Reddy P R, Ganesh S D, Saha N, Zandraa O and Sáha P 2016 J. Nanotechnol. 2016 1CrossRefGoogle Scholar
  9. 9.
    Visweswara Rao P, Nallappan D, Madhavi K, Rahman S, Wei L J and Gan S H 2016 Oxid. Med. Cell Longev. 2016 1Google Scholar
  10. 10.
    Cai Y, Luo Q, Sun M and Corke H 2004 Life Sci. 74 2157CrossRefGoogle Scholar
  11. 11.
    Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh D B, Harsoor V, Manjunath S et al 2011 Cancer Nanotechnol. 2 57CrossRefGoogle Scholar
  12. 12.
    Sileikaite A, Prosycevas I, Puiso J, Juraitis A and Guobiene A 2006 Mater. Sci. 12 287Google Scholar
  13. 13.
    Durga Praveena V and Vijaya Kumar K 2014 Ind. J. Adv. Chem. Sci. 2 171Google Scholar
  14. 14.
    Malina D, Sobczak-Kupiec A, Wzorek Z and Kowalski Z 2012 Dig. J. Nanomater. Bios. 7 1527Google Scholar
  15. 15.
    Kim K A, Cha J R and Gong M S 2013 Bull. Korean Chem. Soc. 34 505CrossRefGoogle Scholar
  16. 16.
    Al-Thabaiti S A, Al-Nawaiser F M, Obaid A Y, Al-Youbi A O and Khan Z 2008 Colloids Surf. B 67 230CrossRefGoogle Scholar
  17. 17.
    Kharissova O V, Dias H V R, Kharisov B I, Pérez B O and Jiménez Pérez V M 2013 Trends Biotechnol. 31 240CrossRefGoogle Scholar
  18. 18.
    Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G and Annadurai G 2014 Bioinorg. Chem. Appl. 2014 1CrossRefGoogle Scholar
  19. 19.
    Sharma V K, Yngard R A and Lin Y 2009 Adv. Colloid. Interf. Sci. 145 83CrossRefGoogle Scholar
  20. 20.
    Ankanna S, Prasad T N V K V, Elumalai E K and Savithramma N 2010 Dig. J. Nanomater. Bios. 5 369Google Scholar
  21. 21.
    Mahdieh M, Zolanvari A, Azimee A S and Mahdieh M 2012 Sci. Iran. 19 926CrossRefGoogle Scholar
  22. 22.
    Singh M, Kalaivani R, Manikandan S, Sangeetha N and Kumaraguru A K 2013 Appl. Nanosci. 3 145CrossRefGoogle Scholar
  23. 23.
    Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V and Galdiero M 2011 Molecules 16 8894CrossRefGoogle Scholar
  24. 24.
    Burda C, Chen X, Narayanan R and El-Sayed M A 2005 Chem. Rev. 105 1025CrossRefGoogle Scholar
  25. 25.
    Yallappa S and Manjanna J 2014 J. Cluster Sci. 25 1449CrossRefGoogle Scholar
  26. 26.
    Gomez-Romero P 2001 Adv. Mater. 13 163CrossRefGoogle Scholar
  27. 27.
    A brief history of Rhubarb in western civilization, http://www.highaltituderhubarb.com/Pages/history.aspx. Accessed 16 December 2016
  28. 28.
    Health benefits of Rhubarb https://www.organicfacts.net/health-benefits/fruit/rhubarb.html. Accessed 16 December 2016
  29. 29.
    Li H, Yang T, Zhou H, Du J, Zhu B and Sun Z 2017 Front. Pharmacol. 7 536Google Scholar
  30. 30.
    Ramasubba Reddy P, Nabanita S, Ganesh S D, Zuzana K, Monika S and Petr S 2017 Int. J. Polym. Mater.,  https://doi.org/10.1080/00914037.2017.1291516
  31. 31.
    Welsh E R, Schauer C L, Qadri S B and Price R R 2002 Biomacromolecules 3 1370CrossRefGoogle Scholar
  32. 32.
    Chen D, Qiao X, Qui X and Chen J 2009 J. Mater. Sci. 441076CrossRefGoogle Scholar
  33. 33.
    Ravindran A, Chandran P and Sudheer Khan S 2013 Colloids Surf. B 105 342CrossRefGoogle Scholar
  34. 34.
    Benyettou F, Rezgui R, Ravaux F, Jaber T, Blumer K, Jouiad M et al 2015 J. Mater. Chem. B 3 7237CrossRefGoogle Scholar
  35. 35.
    Krishna Rao K S V, Ramasubba Reddy P, Lee Y I and Kim C 2012 Carbohydr. Polym. 87 920CrossRefGoogle Scholar
  36. 36.
    Tripathi S, Mehrotra G K and Dutta P K 2001 Bull. Mater. Sci. 34 29CrossRefGoogle Scholar
  37. 37.
    Jayaramudu T, Raghavendra G M, Varaprasad K, Sadiku R and Raju K M 2013 Carbohydr. Polym. 92 2193CrossRefGoogle Scholar
  38. 38.
    Varaprasad K, Reddy G S M, Jayaramudu J, Sadiku R, Ramam K and Ray S S 2014 Biomater. Sci. 2 257CrossRefGoogle Scholar
  39. 39.
    Jayaramudu T, Raghavendra G M, Varaprasad K, Mohana Raju K, Sadiku E R and Kim J 2016 J. Appl. Polym. Sci. 133 43921CrossRefGoogle Scholar
  40. 40.
    Mónica G, Ravishankar B, Elena A, Félix S, Dolores M M, Javier H F et al 2016 Materials 9 325CrossRefGoogle Scholar
  41. 41.
    Jeyaraj M, Sathishkumar G, Sivanandhan G, Mubarak Ali D, Rajesh M, Arun R et al 2013 Colloids Surf. B: Biointerf. 106 86CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Centre of Polymer SystemsUniversity Institute, Tomas Bata University in ZlinZlinCzech Republic
  2. 2.Department for Biomaterials Research, Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Institute of Virology, Biomedical CentreSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations