Skip to main content

Effect of borax additive on the dielectric response of polypyrrole

Abstract

The main aim of this study is to produce added polypyrrole (PPy) borax composites with high dielectric properties for technological applications. For this purpose, PPy–borax composites with different borax concentrations varying from 10 to 50 wt% have been prepared. To reveal their structural and morphological attributes, the composites have been characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. The real and imaginary parts of complex dielectric function, the imaginary component of complex electrical modulus and ac conductivity have been investigated at room temperature as a function of frequency in the range 100 Hz–15 MHz. It has been found that addition of borax increases the dielectric constant of pure PPy. In this respect, PPy–borax composites with the highest dielectric constant at low frequency may be utilized in charge storing devices. On the other hand, the dielectric loss is also very high in low-frequency region for the composites with high borax content. Exploiting this property, the material may also be used in decoupling capacitor applications. The relaxation mechanisms of the samples have also been determined as non-Debye type. The Nyquist curves of the samples have been analysed for calculating the grain and grain boundary resistance and capacitance values. In conclusion, borax has a promising potential to be used as a cheap and effective filler for improving the dielectric properties of PPy polymer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ballav N and Biswas M 2005 Polym. Int. 54 725

    Article  Google Scholar 

  2. Liu R and Liu Z 2009 Chin. Sci. Bull. 54 2028

    Google Scholar 

  3. Shown I, Ganguly A, Chen L and Chen K 2015 Energy Sci. Eng. 3 2

    Article  Google Scholar 

  4. Chang K C, Hsu C H, Peng C W, Huang Y Y, Yeh J M, Wan H P et al 2014 Express Polym. Lett. 8 207

    Article  Google Scholar 

  5. Jose J P, Mhetar V, Culligan S and Thomas S 2013 Sci. Adv. Mater. 5 385

    Article  Google Scholar 

  6. Kurachi K and Kise 1994 Polym. J. 26 1325

  7. Wang Y, Sotzing G A and Weiss R A 2008 Chem. Mater. 20 2574

    Article  Google Scholar 

  8. Wanekaya A K, Lei Y, Bekyarova E, Chen W, Haddon R, Mulchandani A et al 2006 Electroanalysis 18 1047

    Article  Google Scholar 

  9. Cavdar A D, Mengeloğlu F and Karakus K 2015 Measurement 60 6

    Article  Google Scholar 

  10. Gumus O Y, Unal H I, Erol O and Sari B 2011 Polym. Compos. 32 418

    Article  Google Scholar 

  11. Lin H L, Liu Y F, Yu T L, Liu W H and Rwei S P 2005 Polymer 46 5541

    Article  Google Scholar 

  12. Gao S, Guo J and Nishinari K 2008 Carbohydr. Polym. 72 315

    Article  Google Scholar 

  13. Kim S H, Hyun K, Moon T S, Mitsumata T, Hong J S, Ahn K H et al 2005 Polymers 46 7156

    Article  Google Scholar 

  14. Basavaraja C, Veeranagouda Y, Lee K, Vishnuvardhan T and Pierson R 2010 J. Polym. Res. 17 233

  15. Maity A and Sinha Ray S 2008 Macromol. Rapid Commun. 29 1582

    Article  Google Scholar 

  16. Nicho M and Hu H 2000 Sol. Energy Mater. Sol. Cells 63 423

  17. Gao F, Hou X, Wang A, Chu G, Wu W, Chen J et al 2016 Particuology 26 73

    Article  Google Scholar 

  18. Karim M R, Lee C J, Chowdhury A S, Nahar N and Lee M S 2007 Mater. Lett. 61 1688

    Article  Google Scholar 

  19. Yang C, Liu P, Guo J and Wang Y 2010 Synth. Met. 160 592

    Article  Google Scholar 

  20. Heller G 1986 K C Buschbeck and K Niedenzu (eds) Boron and oxygen in: B boron compounds 3rd suppl vol 2 (Berlin: Springer-Verlag) p 166

  21. Gönen M 2009 Nanosized zinc borate production (Izmir: Izmir Institute of Technology)

    Google Scholar 

  22. Koops C 1951 Phys. Rev. 83 121

    Article  Google Scholar 

  23. Maxwell J 1873 Electricity and magnetism (London: Oxford University Press)

    Google Scholar 

  24. Wagner K W 1913 Ann. Phys. 40 817

    Article  Google Scholar 

  25. Panwar V, Park J O, Park S H, Kumar S and Mehra R M 2010 J. Appl. Polym. Sci. 115 1305

    Article  Google Scholar 

  26. Cole K S and Cole R H 1941 J. Chem. Phys. 9 341

    Article  Google Scholar 

  27. Haase W and Wrobel S 2003 Relaxation phenomena: liquid crystals, magnetic systems, polymers, high-Tc superconductors, metallic glasses (Berlin: Springer-Verlag)

    Book  Google Scholar 

  28. Meller A 1983 Gmelin handbuch der anorganische chemie, boron compounds (Berlin: Springer-Verlag)

    Google Scholar 

  29. Vassilikou-Dova A and Kalogeras I M 2009 in: J D Menczel and R B Prime (eds) Thermal analysis of polymers: fundamentals and applications (New Jersey: Wiley) p 497

  30. Adam N, Uğur A L, Altındal A and Erdoğmuş A 2014 Polyhedron 68 32

    Article  Google Scholar 

  31. El-Gamal S, Ismail A M and El-Mallaway R 2015 J. Mater. Sci.: Mater. Electron 26 7544

    Google Scholar 

  32. Qureshi A, Singhi N L, Shah S, Singh F and Avasthi D K 2008 J. Macromol. Sci. 45 265

    Article  Google Scholar 

  33. Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812

    Article  Google Scholar 

  34. Angell C A 1990 Chem. Rev. 90 523

    Article  Google Scholar 

  35. Hodge I M, Ingram M D and West A R 1976 J. Electroanal. Chem. Interfacial Electrochem. 74 125

    Article  Google Scholar 

  36. Gerhardt R 1994 J. Phys. Chem. Solids 55 1491

    Article  Google Scholar 

  37. Prakash T, Prasad K P, Kavitha R, Ramasamy S and Murty B S 2007 J. Appl. Phys. 102 104104

    Article  Google Scholar 

  38. Mahamoud H, Louati B, Hlel F and Guidara K 2011 J. Alloys Compd. 509 6083

    Article  Google Scholar 

  39. Kaushal A, Olhero S M, Singh B, Fagg D P, Bdikin I and Ferreira J M F 2014 Ceram. Int. 40 10593

    Article  Google Scholar 

  40. Jonscher A K. 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press)

    Google Scholar 

  41. Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57

    Article  Google Scholar 

  42. Rao K S, Krishna P M, Prasad D M, Latha T S and Satyanarayana C 2008 Indian J. Eng. Mater. Sci. 15 215

    Google Scholar 

  43. Lee W K, Liu J F and Nowick A S 1991 Phys. Rev. Lett. 67 1559

    Article  Google Scholar 

  44. Ke S, Huang H, Ren L and Wang Y 2009 J. Appl. Phys. 105 096103

    Article  Google Scholar 

  45. Lunkenheimer P and Loidl A 2003 Phys. Rev. Lett. 91 207601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kiliç.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiliç, M., Karabul, Y., Özdemir, Z.G. et al. Effect of borax additive on the dielectric response of polypyrrole. Bull Mater Sci 41, 52 (2018). https://doi.org/10.1007/s12034-018-1564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1564-8

Keywords

  • Polypyrrole
  • borax
  • dielectric properties
  • Nyquist plot
  • non-Debye-type relaxation
  • Cole–Cole equation