Abstract
The main aim of this study is to produce added polypyrrole (PPy) borax composites with high dielectric properties for technological applications. For this purpose, PPy–borax composites with different borax concentrations varying from 10 to 50 wt% have been prepared. To reveal their structural and morphological attributes, the composites have been characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. The real and imaginary parts of complex dielectric function, the imaginary component of complex electrical modulus and ac conductivity have been investigated at room temperature as a function of frequency in the range 100 Hz–15 MHz. It has been found that addition of borax increases the dielectric constant of pure PPy. In this respect, PPy–borax composites with the highest dielectric constant at low frequency may be utilized in charge storing devices. On the other hand, the dielectric loss is also very high in low-frequency region for the composites with high borax content. Exploiting this property, the material may also be used in decoupling capacitor applications. The relaxation mechanisms of the samples have also been determined as non-Debye type. The Nyquist curves of the samples have been analysed for calculating the grain and grain boundary resistance and capacitance values. In conclusion, borax has a promising potential to be used as a cheap and effective filler for improving the dielectric properties of PPy polymer.
This is a preview of subscription content, access via your institution.







References
Ballav N and Biswas M 2005 Polym. Int. 54 725
Liu R and Liu Z 2009 Chin. Sci. Bull. 54 2028
Shown I, Ganguly A, Chen L and Chen K 2015 Energy Sci. Eng. 3 2
Chang K C, Hsu C H, Peng C W, Huang Y Y, Yeh J M, Wan H P et al 2014 Express Polym. Lett. 8 207
Jose J P, Mhetar V, Culligan S and Thomas S 2013 Sci. Adv. Mater. 5 385
Kurachi K and Kise 1994 Polym. J. 26 1325
Wang Y, Sotzing G A and Weiss R A 2008 Chem. Mater. 20 2574
Wanekaya A K, Lei Y, Bekyarova E, Chen W, Haddon R, Mulchandani A et al 2006 Electroanalysis 18 1047
Cavdar A D, Mengeloğlu F and Karakus K 2015 Measurement 60 6
Gumus O Y, Unal H I, Erol O and Sari B 2011 Polym. Compos. 32 418
Lin H L, Liu Y F, Yu T L, Liu W H and Rwei S P 2005 Polymer 46 5541
Gao S, Guo J and Nishinari K 2008 Carbohydr. Polym. 72 315
Kim S H, Hyun K, Moon T S, Mitsumata T, Hong J S, Ahn K H et al 2005 Polymers 46 7156
Basavaraja C, Veeranagouda Y, Lee K, Vishnuvardhan T and Pierson R 2010 J. Polym. Res. 17 233
Maity A and Sinha Ray S 2008 Macromol. Rapid Commun. 29 1582
Nicho M and Hu H 2000 Sol. Energy Mater. Sol. Cells 63 423
Gao F, Hou X, Wang A, Chu G, Wu W, Chen J et al 2016 Particuology 26 73
Karim M R, Lee C J, Chowdhury A S, Nahar N and Lee M S 2007 Mater. Lett. 61 1688
Yang C, Liu P, Guo J and Wang Y 2010 Synth. Met. 160 592
Heller G 1986 K C Buschbeck and K Niedenzu (eds) Boron and oxygen in: B boron compounds 3rd suppl vol 2 (Berlin: Springer-Verlag) p 166
Gönen M 2009 Nanosized zinc borate production (Izmir: Izmir Institute of Technology)
Koops C 1951 Phys. Rev. 83 121
Maxwell J 1873 Electricity and magnetism (London: Oxford University Press)
Wagner K W 1913 Ann. Phys. 40 817
Panwar V, Park J O, Park S H, Kumar S and Mehra R M 2010 J. Appl. Polym. Sci. 115 1305
Cole K S and Cole R H 1941 J. Chem. Phys. 9 341
Haase W and Wrobel S 2003 Relaxation phenomena: liquid crystals, magnetic systems, polymers, high-Tc superconductors, metallic glasses (Berlin: Springer-Verlag)
Meller A 1983 Gmelin handbuch der anorganische chemie, boron compounds (Berlin: Springer-Verlag)
Vassilikou-Dova A and Kalogeras I M 2009 in: J D Menczel and R B Prime (eds) Thermal analysis of polymers: fundamentals and applications (New Jersey: Wiley) p 497
Adam N, Uğur A L, Altındal A and Erdoğmuş A 2014 Polyhedron 68 32
El-Gamal S, Ismail A M and El-Mallaway R 2015 J. Mater. Sci.: Mater. Electron 26 7544
Qureshi A, Singhi N L, Shah S, Singh F and Avasthi D K 2008 J. Macromol. Sci. 45 265
Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812
Angell C A 1990 Chem. Rev. 90 523
Hodge I M, Ingram M D and West A R 1976 J. Electroanal. Chem. Interfacial Electrochem. 74 125
Gerhardt R 1994 J. Phys. Chem. Solids 55 1491
Prakash T, Prasad K P, Kavitha R, Ramasamy S and Murty B S 2007 J. Appl. Phys. 102 104104
Mahamoud H, Louati B, Hlel F and Guidara K 2011 J. Alloys Compd. 509 6083
Kaushal A, Olhero S M, Singh B, Fagg D P, Bdikin I and Ferreira J M F 2014 Ceram. Int. 40 10593
Jonscher A K. 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press)
Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57
Rao K S, Krishna P M, Prasad D M, Latha T S and Satyanarayana C 2008 Indian J. Eng. Mater. Sci. 15 215
Lee W K, Liu J F and Nowick A S 1991 Phys. Rev. Lett. 67 1559
Ke S, Huang H, Ren L and Wang Y 2009 J. Appl. Phys. 105 096103
Lunkenheimer P and Loidl A 2003 Phys. Rev. Lett. 91 207601
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kiliç, M., Karabul, Y., Özdemir, Z.G. et al. Effect of borax additive on the dielectric response of polypyrrole. Bull Mater Sci 41, 52 (2018). https://doi.org/10.1007/s12034-018-1564-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12034-018-1564-8
Keywords
- Polypyrrole
- borax
- dielectric properties
- Nyquist plot
- non-Debye-type relaxation
- Cole–Cole equation