Magnetic measurements, Raman and infrared spectra of metal–ligand complex derived from \(\hbox {CoCl}_{2}\cdot \hbox {6H}_{2}\hbox {O}\) and 2-benzoyl pyridine

  • S Datta
  • A S Mahapatra
  • P Sett
  • M Ghosh
  • P K Mallick
  • P K Chakrabarti


Nanocrystalline complex of \(\hbox {CoCl}_{2}\cdot 6\hbox {H}_{2}\hbox {O}{-}2\)-benzoyl pyridine is prepared by chemical route. Each component of the desired complex is identified by analysing the X-ray diffractograms. Energy-dispersive X-ray analysis (EDX) data confirmed the presence of the desired elements of the sample. Theoretical optimized structure of the complex was derived using ab initio density functional level of theory (DFT) method of calculation. The average nanocrystallite size estimated from the XRD data is \(\sim \)43 nm. Static magnetic property of the complex is studied in the temperature range from 300 K down to 14 K. The estimated magnetic moment of the complex is high when compared to that of the free ion magnetic moment of \(\hbox {Co}^{2+}\) and this is attributed to the less effect of the crystal field acting on the ion in the organic complex due to which orbital moments are not fully quenched. The magnetic property of the complex is also remarkably enhanced compared to that of the diamagnetic 2-benzoyl pyridine which may be suitable for applications in devices. FTIR and Raman spectra of the ligand, 2-benzoyl pyridine and the synthesized complex are recorded at room temperature, which not only confirm the presence of each phase in the complex, but some interesting results are also extracted from the analyses of different Raman active modes of the complex.


\(\hbox {CoCl}_{2}{-}2\)-benzoyl pyridine magnetic property Raman spectroscopy 



We acknowledge the financial support received from DST, Govt. of India, through FIST program.


  1. 1.
    Browne W R, Hage R and Vos J G 2006 Coord. Chem. Rev.  250 1653CrossRefGoogle Scholar
  2. 2.
    Mautner F A, Louka F R, Le Guet T and Massoud S S 2009 J. Mol. Struct. 919 196CrossRefGoogle Scholar
  3. 3.
    Kaim W and Sarkar B 2007 Coord. Chem. Rev.  251 584CrossRefGoogle Scholar
  4. 4.
    Demandis K D, Hartshorn C M and Meyer T J 2001 Chem. Rev.  101 2655CrossRefGoogle Scholar
  5. 5.
    Kaim W, Klein A and Glockle M 2000 Acc. Chem. Res.  33 755CrossRefGoogle Scholar
  6. 6.
    Ward M D 1997 Chem. Ind. 16 640Google Scholar
  7. 7.
    Paul F and Lapinte C 1998 Coord. Chem. Rev.  431 178Google Scholar
  8. 8.
    Brunschwig B S and Sutin N 1999 Coord. Chem. Rev.  187 233CrossRefGoogle Scholar
  9. 9.
    Bencini A, Ceotini I, Daul C A and Ferretti A 1999 J. Am. Chem. Soc.  121 11418CrossRefGoogle Scholar
  10. 10.
    Solomon E I, Brunold T C, Davis M I, Kemsley J N, Lee S K, Lehnert N et al 2000 Chem. Rev.  100 235CrossRefGoogle Scholar
  11. 11.
    Bugarevich D S, Kajimoto O and Hara K 1994 J. Phys. Chem.  98 2278CrossRefGoogle Scholar
  12. 12.
    Jinguji M J, Hosako Y and Obi K 1979 J. Phys. Chem.  83 2551CrossRefGoogle Scholar
  13. 13.
    Wensea G, Skalski B and Paszyc S 1991 J. Photochem. Photobiol.  57A 279CrossRefGoogle Scholar
  14. 14.
    Sett P, Datta S and Mallick P K 2011 J. Raman Spectrosc.  42 859CrossRefGoogle Scholar
  15. 15.
    Dey S, Sarkar S, Zangrando E, Evans H S, Sutter J P and Chattopadhyay P 2011 Inorg. Chem. Acta  367 1CrossRefGoogle Scholar
  16. 16.
    Goher M A S and Mak T C W 1985 Inorg. Chem. Acta  99 223CrossRefGoogle Scholar
  17. 17.
    Mak T C W and Goher M A S 1986 Inorg. Chem. Acta  115 17CrossRefGoogle Scholar
  18. 18.
    Abu-Youssef M A M, Escular A, Gatteschi D, Goher M A S, Mautner F A and Vicente R 1999 Inorg. Chem.  38 5716CrossRefGoogle Scholar
  19. 19.
    Malecki G, Machura B, Swithicka A and Kusz J 2011 Polyhedron  30 410CrossRefGoogle Scholar
  20. 20.
    Plytzanopoulos M, Pneumatikakis G, Hadjiliadis N and Katakis D 1977 J. Inorg. Nucli. Chem.  39 963Google Scholar
  21. 21.
    Frisch M J et al 2003 Gaussian 03: Revision B.03 (Pittsburgh, PA: Gaussian Inc.)Google Scholar
  22. 22.
    Datta S, Sett P, Chowdhury J, Ghosh M and Mallick P K 2011 J. Appl. Spectrosc.  42 1447Google Scholar
  23. 23.
    Sarkar B J, Bandyopadhyay A, Mandal J, Deb A K and Chakbarti P K 2016 J. Alloys Compd.  656 339CrossRefGoogle Scholar
  24. 24.
    Bandyopadhyay A, Sutradhar S, Sarkar B J, Deb A K and Chakbarti P K 2012 Appl. Phys. Lett.  100 252411CrossRefGoogle Scholar
  25. 25.
    Nakamoto K 1997 Infrared and Raman spectra of inorganic and coordination compounds (New York: John Wiley & Sons Inc.) 5th ednGoogle Scholar
  26. 26.
    Faulques E, Perry D I, Lott S, Zubkowski J D and Valente E J 1998 Spectrochim. Acta  54A 869CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • S Datta
    • 1
  • A S Mahapatra
    • 1
  • P Sett
    • 2
  • M Ghosh
    • 3
  • P K Mallick
    • 1
  • P K Chakrabarti
    • 1
  1. 1.SSRL, Department of PhysicsBurdwan UniversityBurdwanIndia
  2. 2.Physics DepartmentGobordanga Hindu CollegeN. 24 ParganasIndia
  3. 3.Spectroscopy DepartmentIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations