Skip to main content
Log in

Structures and electronic properties of \(\hbox {W}_{m}\hbox {Cu}_{n}\,(n + m \le 7)\) clusters

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Geometric and electronic structures of \(\hbox {W}_{m}\hbox {Cu}_{n}\, (m + n \le 7)\) cluster have been systematically calculated by density functional theory at the generalized gradient approximation level for ground-state structures. \(\hbox {W}_{m}\hbox {Cu}_{n}\) clusters with \(n = 1, 3, 5\) tend to form bipyramid structures, whereas \(\hbox {WCu}_{n}\) favour planar shapes except for \(\hbox {WCu}_{5}\). The configurations of \(\hbox {W}_{m}\hbox {Cu}_{n}\) clusters are more sensitive to the Cu atoms than the W atoms, while the average atomic binding energies and the total magnetic moments are determined by W atoms. The calculated second-order differences in energies and HOMO–LOMO energy gaps show pronounced odd–even oscillating behaviours. From the Mulliken electron population analysis, we found that Cu 4p and W 6p orbitals exhibit electronic charges and both Cu 4s and W 6s orbitals transfer electronic charges to the W 5d orbital, which lead to the extension of W–Cu bond lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. İskender M and Ati M 2016 J. Alloys Compd. 667 275

    Article  Google Scholar 

  2. Sun Q and Wang Q 2005 J. Am. Chem. Soc. 127 14582

    Article  Google Scholar 

  3. Wagemans R W P, Lenthe J H V and Jongh P E D 2006 J. Cheminform. 127 16675

    Google Scholar 

  4. Levinger N E, Ray D and Alexander M L 1988 J. Chem. Phys. 89 5654

    Article  Google Scholar 

  5. Wang G C, Jiang L and Morikawa Y 2004 Surf. Sci. 570 205

    Article  Google Scholar 

  6. Zhang X R, Zhang F X and Chen C 2013 Chin. Phys. B 22 123102

    Article  Google Scholar 

  7. Alonso J A 2007 Chem. Rev. 100 637

    Article  Google Scholar 

  8. Alonso J A and March N H 1989 Academic Press 7 563

    Google Scholar 

  9. Alonso J A and Balbás L C 1996 (Berlin, Heidelberg: Springer) 119

  10. Knickelbein M B 1992 Chem. Phys. Lett. 192 129

    Article  Google Scholar 

  11. Powers D E, Hansen S G and Geusic M E 1983 J. Chem. Phys. 78 2866

    Article  Google Scholar 

  12. Lammers V and Borstel G 1994 Phys. Rev. B 49 17360

    Article  Google Scholar 

  13. Fuentealba P 1999 Chem. Phys. Lett. 314 108

    Article  Google Scholar 

  14. Aakeby H, Panas I and Pettersson L G M 1990 J. Phys. Chem. 94 5471

    Article  Google Scholar 

  15. Balbuena P, Derosa P and Seminario J M 1999 J. Phys. Chem. B 103 2830

    Article  Google Scholar 

  16. Calaminici P 1996 J. Chem. Phys. 105 9546

    Article  Google Scholar 

  17. Massobrio C, Pasquarello A and Dal Corso A 1998 J. Chem. Phys. 109 6626

    Article  Google Scholar 

  18. Jackson K A 1993 Phys. Rev. B 47 9715

    Article  Google Scholar 

  19. Jug K, Zimmermann B and Calaminici P 2002 J. Chem. Phys. 116 4497

    Article  Google Scholar 

  20. Jaque P and Toro-Labbe A 2002 J. Chem. Phys. 117 3208

    Article  Google Scholar 

  21. Carrión S M, Pis-Diez R and Aguilera-Granja F 2013 Eur. Phys. J. D 67 1

    Article  Google Scholar 

  22. Zhang X R, Ding X L and Dai B J 2005 Mol. Struct-Theochem. 757 113

    Article  Google Scholar 

  23. Du J, Sun X and Meng D 2009 J. Chem. Phys. 131 044313

    Article  Google Scholar 

  24. Estejab A and Botte G G 2016 Comput. Theor. Chem. 1091 31

    Article  Google Scholar 

  25. Yuan J, Yang B and Li G 2015 Comput. Mater. Sci. 102 213

    Article  Google Scholar 

  26. Zhu J, Zhang H and Zhao L 2016 Appl. Surf. Sci. 379 213

    Article  Google Scholar 

  27. Ping L, Toshiharu T and Kiyotaka A 1999 J. Phys. Chem. B 103 9673

    Article  Google Scholar 

  28. Meitzner G, Via G H and Lytle F W 1987 J. Chem. Phys. 87 6354

    Article  Google Scholar 

  29. Lin L and Yang J 2015 J. Mol. Model 21 5717

    Article  Google Scholar 

  30. Dong L, Chen W and Zheng C 2017 J. Alloys Compd. 695 1637

    Article  Google Scholar 

  31. Gao H, Chen W and Zhang Z 2016 Mater. Lett. 176 181

    Article  Google Scholar 

  32. Hossain D, Pittman C U and Gwaltney S R 2014 J. Inorg. Organomet. Polymers 24 241

    Article  Google Scholar 

  33. Wang J and Han J G 2007 J. Cheminform. 38 12670

    Google Scholar 

  34. Ling W, Dong D and Wang S J 2014 J. Phys. Chem. Solids 76 10

    Article  Google Scholar 

  35. Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244

    Article  Google Scholar 

  36. Delley B 1990 J. Chem. Phys. 92 508

    Article  Google Scholar 

  37. Delley B 2000 J. Chem. Phys. 113 7756

    Article  Google Scholar 

  38. Delley B 2002 Phys. Rev. B 66 155125

    Article  Google Scholar 

  39. Lombardi J R 2002 Chem. Rev. 102 2431

    Article  Google Scholar 

  40. Michael D 1986 Chem. Rev. 86 1049

    Article  Google Scholar 

  41. Wu Z J 2003 Chem. Phys. Lett. 370 510

    Article  Google Scholar 

  42. Poater A, Duran M and Jaque P 2006 J. Phys. Chem. B 110 6526

    Article  Google Scholar 

  43. Li C G, Sun H J and Ren B Z 2016 Mol. Phys. 10 1644

    Article  Google Scholar 

  44. Bauschlicher J, Langhoff S R and Partridge H 1990 J. Chem. Phys. 93 8133

    Article  Google Scholar 

  45. Kuang X J, Wang X Q and Liu G B 2011 J. Chem. Sci. 123 1

    Article  Google Scholar 

  46. Mazin I I 1999 Phys. Rev. Lett. 83 1427

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 21207051) and the Graduate Student Research Innovation Program of Jiangsu University of Science and Technology (Grant No. YCX15S-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Xiurong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhicheng, Y., Xiurong, Z., Peiying, H. et al. Structures and electronic properties of \(\hbox {W}_{m}\hbox {Cu}_{n}\,(n + m \le 7)\) clusters. Bull Mater Sci 41, 48 (2018). https://doi.org/10.1007/s12034-018-1555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1555-9

Keywords

Navigation