Metal–insulator transition in the high pressure cubic \(\hbox {CaF}_{2}\)-type structure of \(\hbox {CrO}_{2}\)

  • S Biswas


The total energy, magnetic moment, density of states and energy band structures of \(\hbox {CrO}_{2}\) in the high pressure cubic \(\hbox {CaF}_{2}\) (Fm-3m)-type structure are investigated for the first time by using first principles electronic structure calculations based on density functional theory in the local spin density approximation (LSDA) as well as using LSDA + U method. It is revealed from the present study that \(\hbox {CrO}_{2}\) is a ferromagnetic nearly half-metal in the LDA calculation due to almost occupied \(\hbox {Cr-3de}_{\mathrm{g}}\) orbitals in the spin majority species and a tiny electron contribution at the Fermi level (\(\hbox {E}_{\mathrm{F}}\)) for spin minority species. This compound encounters metal–insulator transition (MIT) upon the application of Hubbard-type Coulomb repulsion \(U = 1 \, \hbox {eV}\). Ferromagnetism is preserved in this transition. Application of U increases the electron correlation, which polarizes \(\hbox {e}_{\mathrm{g}}\) orbitals far below \(\hbox {E}_{\mathrm{F}}\) for spin majority channel while in the spin minority channel \(\hbox {e}_{\mathrm{g}}\) orbitals are polarized well above \(\hbox {E}_{\mathrm{F}}\), resulting in opening of a band gap (\(E_{\mathrm{g}} \sim 1.05\,{\mathrm{eV}}\)) in the vicinity of \(\hbox {E}_{\mathrm{F}}\). Coulomb repulsion increases hybridization between occupied \(\hbox {Cr-3de}_{\mathrm{g}}\) and O-2p orbitals, which induces ferromagnetism both in half-metallic and insulating phases of cubic \(\hbox {CrO}_{2}\).


Half-metal metal–insulator transition double exchange mechanism transition metal oxides Coulomb interaction 


  1. 1.
    Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F et al 1998 Science 282 85CrossRefGoogle Scholar
  2. 2.
    Li X W, Gupta A and Xiao G 1999 Appl. Phys. Lett. 75 713CrossRefGoogle Scholar
  3. 3.
    Stagarescu C B, Su X, Eastman D E, Altmann K N, Himpsel F J and Gupta A 2000 Phys. Rev. B 61 R9233CrossRefGoogle Scholar
  4. 4.
    Fang F Y, Chien C L, Ferrari E F, Li X W, Xiao G and Gupta A 2000 Appl. Phys. Lett. 77 286CrossRefGoogle Scholar
  5. 5.
    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A et al 2001 Appl. Phys. Lett. 86 5585CrossRefGoogle Scholar
  6. 6.
    Coey J M D and Venkatesan M 2002 J. Appl. Phys. 91 8345CrossRefGoogle Scholar
  7. 7.
    Moodera J S, Kinder L R, Wong T M and Meservey M 1995 Phys. Rev. Lett. 74 3273CrossRefGoogle Scholar
  8. 8.
    Gupta A, Li X W and Xiao G 2001 Appl. Phys. Lett. 78 1894CrossRefGoogle Scholar
  9. 9.
    Dai J and Tang J 2001 J. Phys. Rev. B 63 054434CrossRefGoogle Scholar
  10. 10.
    Hwang H Y, Cheong S W, Ong N P and Batlogg B 1996 Phys. Rev. Lett. 77 2041CrossRefGoogle Scholar
  11. 11.
    Manoharan S S, Elefant D, Reiss G and Goodenough J B 1998 Appl. Phys. Lett. 72 984CrossRefGoogle Scholar
  12. 12.
    Coey J M D, Berkowitz A E, Balcells L, Putris F and Berry A 1998 Phys. Rev. Lett. 80 3815CrossRefGoogle Scholar
  13. 13.
    Mazin I I, Singh D J and Ambroasch-Draxl C 1999 Phys. Rev. B 59 411CrossRefGoogle Scholar
  14. 14.
    Kunes J, Novak P, Oppeneer P M, König C, Fraune M, Rüdiger U et al 2002 Phys. Rev. B 65 165105CrossRefGoogle Scholar
  15. 15.
    Toropova A and Kotliar G 2005 Phys. Rev. B 71 172403CrossRefGoogle Scholar
  16. 16.
    Dedkov Y S, Vinogradov A S, Fonin M, König C, Vyalikh D V, Preobrajenski A B et al 2005 Phys. Rev. B 72 060401(R)CrossRefGoogle Scholar
  17. 17.
    Kanchana V, Vaitheeswaran G and Alouan M 2006 J. Phys. Condens. Matter. 18 5155CrossRefGoogle Scholar
  18. 18.
    Chioncel L, Allmaier H, Arrigoni E, Yamasaki A, Daghofer M, Katsnelson M I et al 2007 Phys. Rev. B 75 140406(R)CrossRefGoogle Scholar
  19. 19.
    Singh G P, Ram S, Eckert J and Fecht H J 2009 J. Phys. Conf. Ser. 144 012110Google Scholar
  20. 20.
    Anwar M S, Czeschka F, Hesselberth M, Porcu M and Aarts J 2010 Phys. Rev. B 82 100501(R)CrossRefGoogle Scholar
  21. 21.
    Wu H Y, Chen Y H, Deng C R and Su X F 2012 Int. J. Modern Phys. B 15 1250091CrossRefGoogle Scholar
  22. 22.
    Singh A, Voltan S, Lahabi K and Aarts J 2015 Phys. Rev. X 5 021019Google Scholar
  23. 23.
    Maddox B R, Yoo C, Kasinathan D, Pickett W and Scalettar R 2006 Phys. Rev. B 73 144111CrossRefGoogle Scholar
  24. 24.
    Srivastava V, Rajagopalan M and Sanyal S P 2008 Eur. Phys. J. B 61 131CrossRefGoogle Scholar
  25. 25.
    Dho J, Ki S, Gubkin A, Park J and Sherstobitova E 2010 Solid State Commun. 150 1CrossRefGoogle Scholar
  26. 26.
    Kim S, Kim K, Kang C J and Min B I 2012 Phys. Rev. B 85 094106CrossRefGoogle Scholar
  27. 27.
    Wu H, Chen Y, Deng C and Su X 2012 Phase Transit. 85 8CrossRefGoogle Scholar
  28. 28.
    Li Y and Hao J 2012 Solid State Commun. 152 1216CrossRefGoogle Scholar
  29. 29.
    Alptekin S 2015 J. Mol. Model 21 304CrossRefGoogle Scholar
  30. 30.
    Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864CrossRefGoogle Scholar
  31. 31.
    Kohn W and Sham L J 1965 Phys. Rev. B 140 A1133CrossRefGoogle Scholar
  32. 32.
    Anderson O K 1975 Phys. Rev. B 12 3060CrossRefGoogle Scholar
  33. 33.
    Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244CrossRefGoogle Scholar
  34. 34.
    Anderson O K and Jepsen O 1984 Phys. Rev. Lett. 53 2571CrossRefGoogle Scholar
  35. 35.
    Anisimov V I, Aryastiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767Google Scholar
  36. 36.
    Anisimov V I, Zaanen J and Anderson O K 1991 Phys. Rev. B 44 943CrossRefGoogle Scholar
  37. 37.
    Korotin M A, Anisimov V I, Khomskii D I and Sawatzky G A 1998 Phys. Rev. Lett. 80 (N19) 4305CrossRefGoogle Scholar
  38. 38.
    Matej K, Claude E and Manfred F 2004 Phys. Rev. B 69 132409Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsTaki Government CollegeTaki, North 24 ParganasIndia

Personalised recommendations