Skip to main content
Log in

Influence of donor substitution at \(\mathrm{D}{-}\uppi {-}\mathrm{A}\) architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Using density functional theory and time-dependent density functional theory, we theoretically studied a new series of five novel metal-free organic dyes, namely D1–D5, for application in dye-sensitized solar cells based on donor–\(\uppi \)-spacer–acceptor (\(\mathrm{D}{-}\uppi {-}\mathrm{A}\)) groups. In this present study, five different donor groups have been designed based on triphenylamine–stilbene–cyanoacrylic acid (TPA–St–CA). The electronic structures, UV–visible absorption spectra and photovoltaic properties of these dyes were investigated. Different exchange-correlation functionals were used to establish a proper methodology procedure for calculation and comparison to experimental results of dye TPA–St–CA. The TD-WB97XD method, which gives the best correspondence to experimental values, is discussed. The calculated results reveal that the donor groups in D2 and D3 are promising functional groups for \(\mathrm{D}{-}\uppi {-}\mathrm{A}\). In particular, the D2 dye showed small energy levels and red-shift, negative \(\Delta {G}_{\mathrm{inject}}\), fastest regeneration and largest dipole moment and exciton binding energy when compared with TPA–St–CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grätzel M 2001 Nature 414 6861

    Article  Google Scholar 

  2. Green M A, Emery K, Hishikawa Y and Warta W 2010 Prog. Photovolt. Res. Appl. 18 144

    Article  Google Scholar 

  3. Ha E S, Yoo B, Baik H, Lee Y and Kim K J 2012 Chem. Asian J. 7 1624

    Article  Google Scholar 

  4. Lu X, Zhou G, Wang H, Feng Q and Wang Z S 2012 Phys. Chem. Chem. Phys. 14 4802

    Article  Google Scholar 

  5. Agrawal S, English N J, Thampi K R and MacElroy J M D 2012 Phys. Chem. Chem. Phys. 14 12044

    Article  Google Scholar 

  6. Reagen B O and Gratzel M 1991 Nature 350 737

    Article  Google Scholar 

  7. Irfan A 2013 Mater. Chem. Phys. 142 238

    Article  Google Scholar 

  8. Tarsang R, Promarak V, Sudyoadsuk T, Namuangruk S and Jungsuttiwong S 2014 J. Photochem. Photobiol. A 273 8

    Article  Google Scholar 

  9. Wu G, Kong F, Li J, Chen W, Fang X, Zhang C et al 2013 Dyes Pigm. 99 653

    Article  Google Scholar 

  10. Ma X, Hua J, Wu W, Jin Y, Meng F, Zhan W et al 2008 Tetrahedron 64 345

    Article  Google Scholar 

  11. Ehret A, Stuhl L and Spitler M T 2001 J. Phys. Chem. B 105 9960

    Article  Google Scholar 

  12. Chen Y S, Chao L, Zeng Z H, Wang W B, Wang X S and Zhang B W 2005 J. Mater. Chem. 15 1654

    Article  Google Scholar 

  13. Yao Q H, Meng F S, Li F Y, Tian H and Huang C H 2003 J. Mater. Chem. 13 1048

    Article  Google Scholar 

  14. Tian H, Yang X, Chen R, Zhang R, Hagfeldt A and Sun L 2008 J. Phys. Chem. C 112 29

    Article  Google Scholar 

  15. Zeng W D, Cao Y M, Bai Y, Wang Y H, Shi Y S and Wang P 2010 Chem. Mater. 22 5306

    Article  Google Scholar 

  16. Prakasam M and Anbarasan P M 2016 RSC Adv. 6 75242

    Article  Google Scholar 

  17. Hagberg D P, Yum J H, Lee H J, Angelis F D, Marinado T and Karlsson K M 2008 J. Am. Chem. Soc. 130 6259

    Article  Google Scholar 

  18. Liang M, Xu W, Cai F, Chen P, Peng B and Chen J 2007 J. Phys. Chem. 111 11494

    Google Scholar 

  19. Choi H, Lee J K, Song K J, Song K, Kang S O and K O J 2007 Tetrahedron 63 1553

  20. Koumura N, Wang Z S, Mori S, Miyashita M, Suzuki E and Hara K 2006 J. Am. Chem. Soc. 128 14256

    Article  Google Scholar 

  21. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S and Arakawa H 2001 Chem. Commun. 6 569

    Article  Google Scholar 

  22. Wang Z S, Cui Y, Hara K, Dan-Oh Y, Kasada C and Shinpo A 2007 Adv. Mater. 19 1043

    Article  Google Scholar 

  23. Hara K, Kurashige M, Danoh Y, Kasada C, Shinpo A, Suga S et al 2003 New J. Chem. 27 783

  24. Balanay M P, Dipaling C V P, Lee S H, Kim D H and Lee K H 2007 Sol. Energy Mater. Sol. Cells 91 1775

    Article  Google Scholar 

  25. Lin C Y, Lo C F, Luo L, Lu H P, Hung C S and Diau E W G 2008 J. Phys. Chem. C 113 2

    Google Scholar 

  26. Ito S, Zakeeruddin S M, Humphry-Baker R, Liska P, Charvet R and Comte P 2006 Adv. Mater. 18 1202

    Article  Google Scholar 

  27. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H and Ito S 2005 Adv. Mater. 17 813

    Article  Google Scholar 

  28. Horiuchi T, Miura H, Sumioka K and Uchida S 2004 J. Am. Chem. Soc. 126 12218

    Article  Google Scholar 

  29. Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P et al 2011 Nano Lett. 11 1452

  30. Xu M, Li R, Pootrakulchote N, Shi D, Guo J, Yi Z et al 2008 J. Phys. Chem. C 112 19268

  31. Li G, Zhou Y F, Cao X B, Bao P, Jiang K J, Lin Y et al 2009 Chem. Commun. 16 2201

    Article  Google Scholar 

  32. Yang J, Ganesan P, Teuscher J, Moehl T, Kim Y J, Yi C et al 2014 J. Am. Chem. Soc. 136 5722

    Article  Google Scholar 

  33. Anderson S, Taylor P N and Verschoor G L B 2004 Chemistry 10 518

    Article  Google Scholar 

  34. Duncan W R and Prezhdo O V 2007 Annu. Rev. Phys. Chem. 58 143

    Article  Google Scholar 

  35. Garavelli M 2006 Theor. Chem. Acc. 116 87

    Article  Google Scholar 

  36. Preat J, Jacquemin D, Wathelet V, André J M and Perpéte E A 2006 J. Phys. Chem. A 110 26477

    Article  Google Scholar 

  37. Casanova D, Rotzinger F P and Gratzel M 2010 J. Chem. Theory Comput. 6 1219

    Article  Google Scholar 

  38. Meng S, Kaxiras E, Nazeeruddin M K and Gratzel M 2011 J. Phys. Chem. C 115 9276

    Article  Google Scholar 

  39. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  Google Scholar 

  40. Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51

    Article  Google Scholar 

  41. Lin Y S, Li G D, Mao S P and Chai J D 2013 J. Chem. Theory Comput. 9 263

    Article  Google Scholar 

  42. Rassolov V A, Ratner M A, Pople J A, Redfern P C and Curtiss L A 2001 J. Comput. Chem. 22 976

    Article  Google Scholar 

  43. Barone V and Cossi M 1998 J. Phys. Chem. A 102 1995

    Article  Google Scholar 

  44. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09 (Wallingford, CT: Gaussian Inc.)

  45. O’Boyle N M, Tenderholt A L and Langner K M 2008 J. Comput. Chem. 29 839

    Article  Google Scholar 

  46. Yang Z, Shao C and Cao D 2015 RSC Adv. 5 22892

    Article  Google Scholar 

  47. Jungsuttiwong S, Tarsang R, Sudyoadsuk T, Promarak V, Khongpracha P and Namuangruk S 2013 Org. Electron. 14 711

    Article  Google Scholar 

  48. Asbury J B, Wang Y Q, Hao E, Ghosh H and Lian T 2001 Res. Chem. Intermed. 27 393

    Article  Google Scholar 

  49. Cahen D, Hodes G, Grätzel M, Guillermoles J F and Riess I 2000 J. Phys. Chem. B 104 2053

    Article  Google Scholar 

  50. Narayan M R 2012 Renew. Sustain. Energ. Rev. 16 208

    Google Scholar 

  51. Marinado T, Nonomura K, Nissfolk J, Karlsson M K, Hagberg D P, Sun L et al 2009 Langmuir 26 2592.

    Article  Google Scholar 

  52. Rühle S, Greenshtein M, Chen S G, Merson A, Pizem H, Sukenik C S et al 2005 J. Phys. Chem. B 109 18907

  53. Zhang J, Li H B, Sun S L, Geng Y, Wu Y and Su Z M 2012 J. Mater. Chem. 22 568

    Article  Google Scholar 

  54. Preat J, Jacquemin D, Michaux C and Perpète E A 2010 Chem. Phys. 376 56

    Article  Google Scholar 

  55. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S et al 2004 J. Phys. Chem. B 108 4818

    Article  Google Scholar 

  56. Daeneke T, Mozer A J, Uemura Y, Makuta S, Fekete M, Tachibana Y et al 2012 J. Am. Chem. Soc. 134 16925

    Article  Google Scholar 

  57. Scholes G D and Rumbles G 2006 Nat. Mater. 5 683

    Article  Google Scholar 

  58. Li Y, Pullerits T, Zhao M and Sun M 2011 J. Phys. Chem. C 115 2156

    Google Scholar 

  59. Hwang S, Lee J H, Park C, Lee H, Kim C, Park C et al 2007 Chem. Commun. 46 4887

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the learned referees for their useful and critical comments, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Anbarasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, A., Prakasam, M. & Anbarasan, P.M. Influence of donor substitution at \(\mathrm{D}{-}\uppi {-}\mathrm{A}\) architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study. Bull Mater Sci 40, 1389–1396 (2017). https://doi.org/10.1007/s12034-017-1497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1497-7

Keywords

Navigation