Skip to main content
Log in

Low temperature catalyst-assisted pyrolysis of polymer precursors to carbon

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this work is to study the pyrolysis of polymer precursors to carbon at lower temperatures using a catalyst. We have added different weight ratios of nickel acetate tetrahydrate (NiAc) and multi-walled carbon nanotubes (MWCNTs) as catalysts into two different precursors, polyacrylonitrile (PAN) and resorcinol–formaldehyde (RF), separately. PAN composite was stabilized whereas RF composite was dried under sub-critical conditions followed by pyrolysis carried out at different temperatures. To examine the effect of pyrolysis temperature and catalyst concentration, PAN- and RF-derived carbons were characterized by elemental analysis, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, Fourier transform infrared spectrophotometer and small angle X-ray scattering, respectively. It was found that addition of NiAc facilitated similar carbon yield at much lower temperature than what was obtained without a catalyst. The addition of MWCNTs enhanced the crystallinity of carbon samples, which is otherwise possible only by higher heat treatment. This study clearly suggests adopting catalyst-assisted less energy intensive low temperature pyrolysis for polymer precursors to carbon with better yield as well as crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirsch A 2010 Nat. Mater. 9 868

    Article  Google Scholar 

  2. Falcao E H L and Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    Article  Google Scholar 

  3. Huang Z, Zhang Y, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223

    Article  Google Scholar 

  4. Gouerec P, Talbi H, Miousse D, Tran-Van F, Dao L H and Lee K H 2001 J. Electrochem. Soc148 A94

    Article  Google Scholar 

  5. Tavanai H, Jalili R and Morshed M 2009 Interface Anal. 41 814

    Article  Google Scholar 

  6. Burlant W J and Parsons J L 1956 J. Polym. Sci. 22 249

    Article  Google Scholar 

  7. Cho C W, Cho D, Ko Y G, Kwon O H and Kang I K 2007 Carbon Lett. 8 313

    Article  Google Scholar 

  8. Rahaman M S A, Ismail A F and Mustafa A 2007 Polym. Degrad. Stab. 92 1421

    Article  Google Scholar 

  9. Oya A and Otani S 1979 Carbon 17 131

    Article  Google Scholar 

  10. Kakunuri M, Suresh K and Sharma C S 2016 J. Anal. Appl. Pyrol. 117 317

    Article  Google Scholar 

  11. Maitra T, Sharma S, Srivastava A, Cho Y-K, Madou M and Sharma A 2012 Carbon 50 1753

    Article  Google Scholar 

  12. Maldonado-Hodar F J, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y and Yamada Y 2000 Langmuir 16 4367

    Article  Google Scholar 

  13. Kicinski W, Bystrzejewski M, Rummeli M H and Gemming T 2014 Bull. Mater. Sci. 37 141

    Article  Google Scholar 

  14. Chen Q, Jiang X, Bin Y and Matuso M 2007 Polymer J. 39 568

    Article  Google Scholar 

  15. Watanabe T, Ohtsuka Y and Nishiyama Y 1994 Carbon 32 329

    Article  Google Scholar 

  16. Sharma C S, Patil S, Saurabh S, Sharma A and Venkataraghavan R 2009 Bull. Mater. Sci. 32 239

    Article  Google Scholar 

  17. Sharma C S, Kulkarni M M, Sharma A and Madou M 2009 Chem. Eng. Sci. 64 1536

    Article  Google Scholar 

  18. Al-Muhtaseb S A and Ritter J A 2003 Adv. Mater. 15 101

    Article  Google Scholar 

  19. Maldonado-Hodar F J, Ferro-Garcia M A, Rivera-Utrilla J and Moreno-Castilla C 1999 Carbon 37 1199

    Article  Google Scholar 

  20. Kakunuri M, Vennamalla S and Sharma C S 2015 RSC Adv. 5 4747

    Article  Google Scholar 

  21. Zussman E, Chen X, Ding W, Calabri L, Dikin D A, Quintana J P et al 2005 Carbon 43 2175

    Article  Google Scholar 

  22. Ra E J, An K H, Kim K K, Jeong S Y and Lee Y H 2005 Chem. Phys. Lett. 413 188

    Article  Google Scholar 

  23. Jesus J C D, González I, Quevedo A and Puerta T 2005 J. Mol. Catal. A Chem. 228 283

    Article  Google Scholar 

  24. Sharma S, Sharma A, Cho Y-K and Madou M 2012 Appl. Mater. Interfaces 4 34

    Article  Google Scholar 

  25. Tzeng S-S 2006 Carbon 44 1986

    Article  Google Scholar 

  26. Mittal J, Bahl O P, Mathur R B and Sandle N K 1994 Carbon 32 1133

    Article  Google Scholar 

Download references

Acknowledgements

CSS acknowledges financial support from SERB Young Scientist Award to carry out this work and also Indian Institute of Technology, Hyderabad, for providing necessary research facilities. RA acknowledges Y Sudhakar Reddy for his help in elemental analysis and Hyderabad Central University (Centre for Nanotechnology) for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHANDRA S Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araga, R., Kali, S. & Sharma, C.S. Low temperature catalyst-assisted pyrolysis of polymer precursors to carbon. Bull Mater Sci 40, 1519–1527 (2017). https://doi.org/10.1007/s12034-017-1495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1495-9

Keywords

Navigation