Skip to main content
Log in

Facile method to align crystalline needles composed of organic semiconducting materials using a balance between centrifugal and capillary forces

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Methods to align one-dimensional microstructures composed of organic materials have attracted much attention because of their potential applications to devices such as field-effect transistors. Although dip coating is one of the methods (using self-assembly) used for the purpose, its disadvantage is that a larger amount of the material dissolves in the solution than what actually gets deposited on substrate. In this study, we developed a novel method that requires a small amount of precursor solution. By placing a polydimethylsiloxane block on a glass substrate and rotating the substrate using a spin coater, a small amount of the precursor solution was confined in a narrow region along the foot of the block. When we used an organic semiconducting material, 9,10-dibromoanthracene, as a solute, aligned and roughly oriented crystalline needles were precipitated. The thicknesses and lengths of the crystalline needles were controlled by the composition of the solvent and the rotation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Su B, Wu Y and Jiang L 2012 Chem. Soc. Rev. 41 7832

    Article  Google Scholar 

  2. Tang Q, Jiang L, Tong Y, Li H, Liu Y, Wang Z et al 2008 Adv. Mater. 20 2947

    Article  Google Scholar 

  3. Zhang X, Lu M, Zhang Y, Chen L and Wang Z L 2009 Adv. Mater. 21 2767

    Article  Google Scholar 

  4. Pu D, Zhou W, Li Y, Chen J, Chen J, Zhang H et al 2015 RSC Adv. 5 100725

    Article  Google Scholar 

  5. Jamal M, Xu J and Razeeb K M 2010 Biosens. Bioelectron. 26 1420

    Article  Google Scholar 

  6. Tang Q, Li H, He M, Hu W, Liu C, Chen K et al 2006 Adv. Mater. 18 65

    Article  Google Scholar 

  7. Huang J, Fan R, Connor S and Yang P 2007 Angew. Chem. Int. Ed. 46 2414

    Article  Google Scholar 

  8. Nam S, Jang J, Anthony J E, Park J, Park C E and Kim K 2013 ACS Appl. Mater. Interfaces 5 2146

    Article  Google Scholar 

  9. Liu S, Wang W M, Mannsfeld S C B, Locklin J, Erk P, Gomez M et al 2007 Langmuir 23 7428

    Article  Google Scholar 

  10. Hong S W, Byun M and Lin Z 2009 Angew. Chem. Int. Ed. 48 512

    Article  Google Scholar 

  11. Messer B, Song J H and Yang P 2000 J Am. Chem. Soc. 122 10232

    Article  Google Scholar 

  12. Tong Y, Tang Q, Lemke H T, Moth-Poulsen K, Westerlund F, Hammershoj P et al 2010 Langmuir 26 1130

    Article  Google Scholar 

  13. Li H, Tee B C, Cha J J, Cui Y, Chung J W, Lee S Y et al 2012 J. Am. Chem. Soc. 134 2760

    Article  Google Scholar 

  14. Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R and Witten T A 1997 Nature 389 827

    Article  Google Scholar 

  15. Hu H and Larson R G 2006 J. Phys. Chem. B 110 7090

    Article  Google Scholar 

  16. Hu H and Larson R G 2002 J. Phys. Chem. B 106 1334

    Article  Google Scholar 

  17. Watanabe S, Fujita T, Ribierre J, Takaishi K, Muto T, Adachi C et al 2016 ACS Appl. Mater. Interfaces 8 17574

    Article  Google Scholar 

  18. Furmidge C G L 1962 J. Colloid Sci. 17 309

    Article  Google Scholar 

  19. de Gennes P, Brochard-Wyart F and Quere D 2004 Capillarity and wetting phenomena (New York: Springer-Verlag) Chapter 2, ISBN0-387-00592-7

  20. de Gennes P, Brochard-Wyart F and Quere D 2004 Capillarity and wetting phenomena (New York: Springer-Verlag) Chapter 9, ISBN0-387-00592-7

  21. Shanmuganathan K, Fang Y, Chou D Y, Sparks S, Hibbert J and Ellison C J 2012 ACS Macro Lett. 1 960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Tanaka, K. Facile method to align crystalline needles composed of organic semiconducting materials using a balance between centrifugal and capillary forces. Bull Mater Sci 40, 1127–1136 (2017). https://doi.org/10.1007/s12034-017-1476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1476-z

Keywords

Navigation