Skip to main content

Advertisement

Log in

Two-dimensional cadmium selenide electronic and optical properties: first principles studies

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Structural, electronic and optical properties of two-dimensional (2D) cadmium selenide (CdSe) structures with \(2\times 2\) periodicities are investigated. First principles total energy calculations are performed within the periodic density functional theory. Initially, the structural properties are determined using the local density approximation as implemented in the PWscf code of quantum ESPRESSO package. To investigate the electronic properties, the GW method is applied to determine the energy gap within the plasmon pole and the random phase approximations. Optical properties are investigated to determine the dielectric constant and the Bethe–Salpeter theory is used to calculate the exciton binding energies. Zinc blende and wurtzite phases are considered to calculate the bulk energy gaps, which are compared to the experimental values, finding good agreement. The 2D structure exhibits an energy gap larger than that of the bulk, indicating the effects of reduction in dimensionality; these changes can be attributed to the dangling bonds that are present in the 2D layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Datta S, Saha-Dasgupta T and Sarma D D 2008 J. Phys.: Condens. Matter 20 445217

    Google Scholar 

  2. Gutowski J, Sebald K and Voss T 2009 Semiconductors, vol. 44B (Berlin: Springer) p 75

  3. Madelung O 2004 Semiconductors data handbook (Berlin: Springer) p 815

  4. Efros A L and Rosen M 2000 Annu. Rev. Mater. Sci. 30 475

    Article  Google Scholar 

  5. Colvin V L, Schlamp M C and Alivisatos A P 1994 Nature 370 354

    Article  Google Scholar 

  6. Schlamp M C, Peng X and Alivisatos A P 1997 J. Appl. Phys. 82 5837

    Article  Google Scholar 

  7. Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D et al 1996 Nature 383 802

    Article  Google Scholar 

  8. Schreuder M A, Xiao K, Ivanov I N, Weiss S M and Rosenthal S J 2010 Nano Lett. 10 573

    Article  Google Scholar 

  9. Jie J, Zhang W, Jiang Y and Lee S 2006 Appl. Phys. Lett. 89 133118

    Article  Google Scholar 

  10. Qu L and Peng X 2002 J. Am. Chem. Soc. 124 2049

    Article  Google Scholar 

  11. Frese K W 1982 Appl. Phys. Lett. 40 275

    Article  Google Scholar 

  12. Sun B and Greenham N C 2006 Phys. Chem. Chem. Phys. 8 3557

    Article  Google Scholar 

  13. Hamilton C E, Flood D J and Barron A R 2013 Phys. Chem. Chem. Phys. 15 3930

    Article  Google Scholar 

  14. Amin S A, Salim S T, Salam K M A and Galib M A A 2013 Int. J. Electr. Energy 1 1

    Article  Google Scholar 

  15. Sun B, Marx E and Greenham N C 2003 Nano Lett. 3 961

    Article  Google Scholar 

  16. Bouet C, Mahler B, Nadal B, Abecassis B, Tessier M D, Ithurria S et al 2013 Chem. Mater. 25 639

    Article  Google Scholar 

  17. Son J S, Wen X D, Joo J, Chae J, Baek S I, Park K et al 2009 Angew. Chem. 121 6993

    Article  Google Scholar 

  18. Wen X D, Hoffmann R and Ashcroft N W 2013 Adv. Mater. 25 261

    Article  Google Scholar 

  19. Hao E, Sun H, Zhou Z, Liu J, Yang B and Shen J 1999 Chem. Mater. 11 3096

    Article  Google Scholar 

  20. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J and Kolny-Olesiak J 2010 J. Phys. Chem. C 114 12784

    Article  Google Scholar 

  21. Gamble F R and Silbernagel B G 1975 J. Chem. Phys. 63 2544

    Article  Google Scholar 

  22. Liu M, Yin X B, Avila E U, Geng B S, Zentgraf T, Lu L et al 2011 Nature 474 64

    Article  Google Scholar 

  23. Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A et al 2010 Science 327 662

    Article  Google Scholar 

  24. Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867

    Article  Google Scholar 

  25. Yu G, Chen N, Chen L, Xie Y, Wang F and Ye X 2014 Phys. Status Solidi A 211 952

    Article  Google Scholar 

  26. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al 2009 J. Phys.: Condens. Matter 21 395502

    Google Scholar 

  27. Marini A, Hogan C, Grüning M and Varsano D 2009 Comput. Phys. Commun. 180 1392

    Article  Google Scholar 

  28. Tomasulo A and Ramakrishna M V 1996 J. Chem. Phys. 105 3612

    Article  Google Scholar 

  29. Hadjipanayis G C and Siegel W 1994 Nanophase materials: synthesis–properties–applications (USA: Springer) p 475

  30. Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232

    Article  Google Scholar 

  31. Hedin L 1965 Phys. Rev. 139 A796

    Article  Google Scholar 

  32. Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997

    Article  Google Scholar 

  33. Scholes G D and Rumbles G 2006 Nat. Mater. 5 683

    Article  Google Scholar 

  34. Tran-Thoai D B 1990 Physica B: Condens. Matter 164 295

    Article  Google Scholar 

Download references

Acknowledgements

GHC acknowledges the financial support of VIEP-BUAP, grant 31/EXC/06-G, CONACYT Project #223180 and Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-191). Calculations were performed in the DGCTIC-UNAM Supercomputing Center. Calculations have been also performed at the ‘Laboratorio Nacional de Supercomputo del Sureste’, BUAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Galicia-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galicia-Hernández, J.M., Sánchez-Castillo, A., De La Garza, L.M. et al. Two-dimensional cadmium selenide electronic and optical properties: first principles studies. Bull Mater Sci 40, 1111–1119 (2017). https://doi.org/10.1007/s12034-017-1471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1471-4

Keywords

Navigation