Skip to main content
Log in

Synthesis, structural and dielectric properties of 0.8PMN–0.2PT relaxor ferroelectric ceramic

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A 0.8PMN–0.2PT solid-solution ceramic was synthesized by columbite processing technique. The effects of sintering temperature on the density, structure and microstructure and in turn on the dielectric properties were investigated. The ceramics sintered at and above 1050\(^{\circ }\hbox {C}\) resulted in single-phase perovskite formation. However, high density >90% is achieved only after 1170\(^{\circ }\hbox {C}\). Microstructural analysis revealed that grain size increases with increase in sintering temperature. A significant increase in the peak of dielectric permittivity only after 1150\(^{\circ }\hbox {C}\) owing to increase in density is noted in this study. The quadratic law applied to this ceramic demonstrates that the transition is diffused. The broadness in phase transition and lower dielectric relaxation obtained for the composition demonstrate that the ceramic exhibits characteristics of both relaxor and normal ferroelectrics. The ceramic of composition 0.8PMN–0.2PT exhibits excellent dielectric properties \(\varepsilon _{\mathrm{r}\text {-}\mathrm{max}} =\) 20294−27338 at 100 Hz with \(T_{\mathrm{c}} = 100\)\(96^{\circ }\hbox {C}\) at low sintering temperature 1170–1180\(^{\circ }\hbox {C}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan M F, Ling H C and Rhodes W W 1987 J. Mater. Res. 4 930

    Article  Google Scholar 

  2. Shrout T R and Halliyal A 1987 Am. Ceram. Soc. Bull. 66 704

    Google Scholar 

  3. Cross L E 1996 Mater. Chem. Phys. 43 108

    Article  Google Scholar 

  4. Uršič H, Hrovat M, Holc J, Santo Zarnik M, Drnovšek S, Maček S et al 2008 Sens. Actuators B 133 699

  5. King H W, Ferguson S H, Waechter D F and Prasad S E 2002 Proceedings of the 2nd Canada–US CanSmart Workshop, Montreal, Quebec, Canada p 11

  6. Yamashita Y 1994 Jpn. J. Appl. Phys. 33 4652

    Article  Google Scholar 

  7. Wongmaneerung R, Yimnirun R and Ananta S 2009 J. Mater. Sci. 44 5428

    Article  Google Scholar 

  8. Hilton A D, Randall C A, Barber D J and Shrout T R 1989 Ferroelectrics 93 379

  9. Chen J H and Liou Y-C 2004 Ceram. Int. 30 157

  10. Ravindranathan P, Komarneni S, Bhalla A and Roy R J 1991 J. Am. Ceram. Soc. 74 2996

  11. Liou Y-C and Wu L 1994 J. Am. Ceram. Soc. 77 3255

    Article  Google Scholar 

  12. Elissalde C, Ravez J and Gaucher P 1994 Mater. Sci. Eng. B22 303

    Article  Google Scholar 

  13. Sekar M M A and Halliyal A 1998 J. Am. Ceram. Soc. 81 380

  14. Park J-H and Kim Y 1998 J. Korean Phys. Soc. 32 S967

    Google Scholar 

  15. Babooram K, Tailor H and Ye Z-G 2004 Ceram. Int. 30 1411

    Article  Google Scholar 

  16. Ghasemifard M, Hosseini S M and Khorrami G H 2009 Ceram. Int. 35 2899

    Article  Google Scholar 

  17. Tailor H N, Bokov A A and Ye Z-G 2011 IEEE Trans. Ultrason. Ferroelectr. 58 1920

    Article  Google Scholar 

  18. Shrout T R, Chang Z P, Kim N and Markgraf S 1990 Ferroelectr. Lett. 12 63

  19. Zuo R, Granzow T, Lupascu D C and Rodel J 2007 J. Am. Ceram. Soc. 90 1101

    Article  Google Scholar 

  20. Yu S, Huang H, Zhou L and Ye Y 2008 J. Am. Ceram. Soc. 91 1057

    Article  Google Scholar 

  21. Garcia J E, Guerra J D S, Araújo E B and Perez R 2009 J. Phys. D Appl. Phys. 42 115421

    Article  Google Scholar 

  22. Zhai H-F, Tang R-L, Dong A, Guo H-R, Xia Y-D and Wu D 2009 J. Am. Ceram. Soc. 92 1256

  23. Zhao S, Li Q, Feng Y and Nan C 2009 J. Phys. Chem. Solids 70 639

  24. Zhang Y C, Yang Z Z, Ye W N, Lu C J and Xia L H 2011 J. Mater. Sci. Mater. Electron. 22 309

    Article  Google Scholar 

  25. Zhao S-X, Li Q, Song F, Li C and Shen D 2007 Key Eng. Mater. 336–338 10

    Article  Google Scholar 

  26. Lam K H, Li K and Chan H L W 2005 Mater. Res. Bull. 40 1955

    Article  Google Scholar 

  27. Swartz S L and Shrout T 1982 Mater. Res. Bull. 17 1245

    Article  Google Scholar 

  28. Guha J P, Hong D J and Anderson H U 1988 J. Am. Ceram. Soc. 71 C-152

    Google Scholar 

  29. Yoon K H, Ahn K P and Cho Y S 1993 Ferroelectrics 146 57

    Article  Google Scholar 

  30. Sharma Y, Sil A and Yadav K L 2005 Indian J. Eng. Mater. Sci. 12 317

    Google Scholar 

  31. Fang B, Jiang N, Ding C, Du Q and Ding J 2012 Phys. Status Solidi A 209 254

    Article  Google Scholar 

  32. Ding C, Fang B, Du Q and Zhou L 2010 Phys. Status Solidi A 207 979

  33. Shaikh P A and Kolekar Y D 2012 J. Anal. Appl. Pyrolysis 93 41

    Article  Google Scholar 

  34. Lejenue M and Biolot J P 1985 Mater. Res. Bull. 20 493

    Article  Google Scholar 

  35. Xu G, Luo H, Wang P, Ql Z and Yin Z 2000 Chin. Sci. Bull. 45 1380

    Article  Google Scholar 

  36. Gupta S M and Kulkarni A R 1996 J. Eur. Ceram. Soc. 16 473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V Takarkhede.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takarkhede, M.V., Band, S.A. Synthesis, structural and dielectric properties of 0.8PMN–0.2PT relaxor ferroelectric ceramic. Bull Mater Sci 40, 917–923 (2017). https://doi.org/10.1007/s12034-017-1444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1444-7

Keywords

Navigation