Skip to main content
Log in

Investigation of capacitance characteristics in metal/high-k semiconductor devices at different parameters and with and without interface state density (traps)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Capacitance vs. voltage (\(C{-}V\)) curves at AC high frequency of a metal–insulator–semiconductor (MIS) capacitor are investigated in this paper. Bi-dimensional simulations with Silvaco TCAD were carried out to study the effect of oxide thickness, the surface of the structure, frequency, temperature and fixed charge in the oxide on the \(C{-}V\) curves. We evaluate also the analysis of MIS capacitor structures by different substrate doping concentrations with and without interface state density at different temperatures (100, 300 and 600 K). These studies indicate that the doping substrate concentration and the traps enormously affect the high-frequency \(C{-}V\) curve behaviour. We also demonstrate that for low and high temperatures, the high-frequency \(C{-}V\) curves behaviour changes, indicating that the capacitance due to the substrate is significantly influenced in these conditions (bias and substrate doping concentration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaure N B, Ray A K and Capan R 2005 Semicond. Sci. Technol. 20 788

    Article  Google Scholar 

  2. Hlali S, Hizem N and Kalboussi A 2017 Bull. Mater. Sci. 40 67

    Article  Google Scholar 

  3. Shubham K and Khan R U 2013 J. Electron Devices 17 1439

    Google Scholar 

  4. Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243

    Article  Google Scholar 

  5. Cho M, Park H B, Park J et al 2003 J. Appl. Phys. 94 2563

    Article  Google Scholar 

  6. Jinesh K B, Van Hemmen J L, Van de Sanden M C M et al 2011 J. Electrochem. Soc. 158 G21

    Article  Google Scholar 

  7. Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243

    Article  Google Scholar 

  8. Duenas S, Castan H, Garcia H et al 2006 J. Appl. Phys. 99 054902

    Article  Google Scholar 

  9. Silvaco International 2014 Device simulation software, version 5.10.0.R

  10. Khairnar A G and Mahajan A M 2013 Bull. Mater. Sci. 36 259

    Article  Google Scholar 

  11. Nicollian E H and Brews J R 1982 MOS (metal oxide semiconductor) physics and technology (New York: Wiley)

    Google Scholar 

  12. Huang W, Khan T and Chow T P 2006 J. Electron. Mater. 35 726

    Article  Google Scholar 

  13. Kim J, Gila B, Mehandru R et al 2002 J. Electrochem. Soc. 149 G482

    Article  Google Scholar 

  14. Ghibaudo G, Clerc R, Vincent E et al 2000 C. R. Acad. Sci. Ser. Phys. 1 911

    Google Scholar 

  15. Kim Y, Han J, Takenaka M et al 2014 Opt. Express 22 7458

    Article  Google Scholar 

  16. Delmotte F 1998 Dépôts de films minces SiNx assistés par plasma de haute densité. Etudes corrélées de la phase gazeuse, de l’interface SiNx/InP et de la passivation du transistor bipolaire à hétérojonction InP. Thése de doctorat (Paris : Université Paris Sud/Paris XI)

  17. Ziliotto A P B and Bellodi M 2011 ECS Trans. 41 163

    Article  Google Scholar 

  18. Sze S M et al (eds) 1994 Semiconductor sensors (New York: Wiley)

    Google Scholar 

  19. Wang M C, Huang H S, Peng M R et al 2014 Int. J. Mater. Prod. Technol. 49 25

    Article  Google Scholar 

  20. Bourguiba F, Dhahri A, Rhouma F I H, Mnefgui S, Dhahri J, Taibi K et al 2016 J. Alloy. Compd. 686 675

  21. Muller R S, Kamins T I, Chan M et al 1986 Device electronics for integrated circuits (New York: Wiley)

  22. Hoex B, Schmidt J, Pohl P et al 2008 J. Appl. Phys. 104 044903

    Article  Google Scholar 

  23. Loozen X, O’Sullivan B J, Rothschild A et al 2010 Phys. Status Solidi Rapid Res. Lett. 4 362

  24. Park H B, Cho M, Park J et al 2003 J. Appl. Phys. 94 1898

    Article  Google Scholar 

  25. Hoogeland D, Jinesh K B, Roozeboom F et al 2009 J. Appl. Phys. 106 114107

    Article  Google Scholar 

  26. Rodrigues M 2006 Caracterização elétrica de capacitores obtidos através de tecnologia ultra-submicrométrica Thése de doctorat (São Paulo: Universidade de São Paulo)

  27. Streetman B G and Banerjee S 2000 Solid state electronic devices (Prentice-Hall)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Microelectronics and Instrumentation Laboratory (\(\mu \!{E}_{\mathrm{i}}\)). Physics Laboratory of Matter INSA-Lyon, France, is thanked for simulation help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hlali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlali, S., Hizem, N. & Kalboussi, A. Investigation of capacitance characteristics in metal/high-k semiconductor devices at different parameters and with and without interface state density (traps). Bull Mater Sci 40, 1035–1041 (2017). https://doi.org/10.1007/s12034-017-1443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1443-8

Keywords

Navigation