Skip to main content
Log in

In situ synthesis and properties of self-reinforced \(\hbox {Si}_{3} \hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3} \ (\hbox {La}_{2}\hbox {O}_{3}\)) glass–ceramic composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In-situ-grown \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\)-reinforced \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) self-reinforced glass–ceramic composites were obtained without any \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) seed crystal. These composites with different compositions were prepared in a nitrogen atmosphere for comparison of phase transformation and mechanical properties. The results showed that \(\hbox {SiO}_{2}\textendash \hbox {Al}_{2}\hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass can effectively promote \(\upalpha \)- to \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) phase transformation. The crystallized \(\hbox {Y}_{2}\hbox {Si}_{2}\hbox {O}_{7}\textendash \hbox {La}_{4.67}\hbox {Si}_{3}\hbox {O}_{13}\) phases with a high melting point significantly benefited the high-temperature mechanical properties of the composites. The \(\hbox {Si}_{3}\hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3}\) \((\hbox {La}_{2}\hbox {O}_{3})\) glass–ceramic composites exhibit excellent mechanical properties compared with unreinforced glass–ceramic matrix, which is undoubtedly attributed to the elongated \(\upbeta \!\hbox {-Si}_{3}\hbox {N}_{4}\) grains. These glass–ceramic \(\hbox {Si}_{3}\hbox {N}_{4}\) composites with excellent comprehensive properties might be a promising material for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu F, Chen B, Shen L, Pun E Y B and Lin H 2014 J. Alloys Compd. 582 265

    Article  Google Scholar 

  2. Marchi J, Morais D S, Schneider J, Bressiani J C and Bressiani A H A 2005 J. Non-Cryst. Solids 351 863

    Article  Google Scholar 

  3. Iftekhar S, Grins J and Eden M 2010 J. Non-Cryst. Solids 356 1043

  4. Iftekhar S, Grins J, Gunawidjaja P N and Eden M 2011 J. Am. Ceram. Soc. 94 2429

    Article  Google Scholar 

  5. Lofaj F, Satet R, Hoffmann M J and Arellano-López A R 2004 J. Eur. Ceram. Soc. 24 3377

    Article  Google Scholar 

  6. Leonova E, Hakeem A S, Jansson K, Stevensson B, Shen Z, Grins J et al 2008 J. Non-Cryst. Solids 354 49

    Article  Google Scholar 

  7. Wakihara T, Tatami J, Komeya K, Meguro T, Kidari A, Hampshire S et al 2012 J. Eur. Ceram. Soc. 32 1157

    Article  Google Scholar 

  8. Redington W, Kidari A, Redington M, Laffir F, Pomeroy M J and Hampshire S 2012 J. Eur. Ceram. Soc. 32 1359

  9. Luo Z, Qu G, Chen X, Liu X and Lu A 2013 J. Non-Cryst. Solids 361 17

  10. Satet R L and Hoffmann J 2004 J. Eur. Ceram. Soc. 24 3437

    Article  Google Scholar 

  11. Pomeroy M J, Nestor E, Ramesh R and Hampshire S 2005 J. Am. Ceram. Soc. 88 875

    Article  Google Scholar 

  12. Li X and Lu A 2011 Bull. Mater. Sci. 34 767

    Article  Google Scholar 

  13. Luo Z, Lu A, Qu G and Lei Y 2013 J. Non-Cryst. Solids 362 207

    Article  Google Scholar 

  14. Hampshire S and Pomeroy M J 2012 J. Eur. Ceram. Soc. 32 1925

    Article  Google Scholar 

  15. Shen Z, Zhao Z, Peng H and Nygren M 2002 Nature 417 266

    Article  Google Scholar 

  16. Lee Y, Kim Y, Choi H and Lee J 2001 J. Mater. Sci. 36 699

    Article  Google Scholar 

  17. Asthana R, Singh M and Martinez-Fernandez J 2013 J. Alloys Compd. 552 137

    Article  Google Scholar 

  18. Go P, Sung C, Kostetsky J J and Vasilos T 2002 J. Mater. Sci. 37 2587

  19. Zhou Y, Hyuga H, Kusano D, Yoshizawa Y and Hirao K A 2011 Adv. Mater. 23 4563

    Article  Google Scholar 

  20. Bal B S and Rahaman M N 2012 Acta Biomater. 8 2889

    Article  Google Scholar 

  21. Ye F, Chen S and Iwasa M 2003 Scr. Mater. 48 1433

  22. Liu L, Ye F, Zhou Y and Zhang Z 2010 Scr. Mater. 63 166

    Article  Google Scholar 

  23. Ye F, Liu L, Zhang J, Iwasa M and Su C 2005 Compos. Sci. Technol. 65 2233

    Article  Google Scholar 

  24. Ye F, Zhang L, Zhang H, Liu L, Liu C and Zhou Y 2009 Mater. Sci. Eng. A 527 287

    Article  Google Scholar 

  25. Chen S, Ye F and Zhou Y 2002 Ceram. Int. 28 51

    Article  Google Scholar 

  26. Baldacim S A, Santos C, Silva O M M and Silva C R M 2004 Mater. Sci. Eng. A 367 312

    Article  Google Scholar 

  27. Zhang Y, Zhang Y, Han J, Zhou Y, Hu L, Yao W et al 2008 Mater. Sci. Eng. A 497 383

    Article  Google Scholar 

  28. Biswas K, Rixecker G and Aldinger F 2004 Mater. Sci. Eng. A 374 56

    Article  Google Scholar 

  29. Wang C, Chen M, Wang H, Fan X and Xia H 2016 J. Eur. Ceram. Soc. 36 689

    Article  Google Scholar 

  30. Lange F F, Singhal S C and Kuznicki R C 1977 J. Am. Ceram. Soc. 60 249

    Article  Google Scholar 

  31. Ye F, Liu L, Zhang J and Meng Q 2008 Compos. Sci. Technol. 68 1073

    Article  Google Scholar 

  32. Ma J, Ye F, Liu L and Zhang H 2009 Mater. Sci. Eng. A 520 158

    Article  Google Scholar 

  33. Dai J, Li J, Chen Y, Yang L and Sun G 2003 Mater. Res. Bull. 38 609

    Article  Google Scholar 

  34. Ye F, Liu L, Zhang H and Zhou Y 2008 Mater. Sci. Eng. A 488 352

    Article  Google Scholar 

  35. Xia Y, Zeng Y and Jiang D 2012 Mater. Des. 33 98

    Article  Google Scholar 

  36. Lai K R and Tien T Y 1993 J. Am. Ceram. Soc. 76 91

    Article  Google Scholar 

  37. Lojanová S, Tatarko P, Chlup Z, Hnatko M, Dusza J, Lencés Z et al 2010 J. Eur. Ceram. Soc. 30 1931

    Article  Google Scholar 

  38. Liu X, Huang Z, Ge Q, Sun X and Huang L 2005 J. Eur. Ceram. Soc. 25 3353

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Numbers 51502349 and 51272288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Lu, A., Han, L. et al. In situ synthesis and properties of self-reinforced \(\hbox {Si}_{3} \hbox {N}_{4}\textendash \hbox {SiO}_{2}\textendash \hbox {Al}_{2} \hbox {O}_{3}\textendash \hbox {Y}_{2}\hbox {O}_{3} \ (\hbox {La}_{2}\hbox {O}_{3}\)) glass–ceramic composites. Bull Mater Sci 40, 683–690 (2017). https://doi.org/10.1007/s12034-017-1426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1426-9

Keywords

Navigation