Skip to main content
Log in

Characterization of hexadecyltrimethylammonium-organoclay and its individual components by thermal techniques

Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The properties of the materials determine their potential applications. The aim of this article is to study the properties of the organoclays using simple and rapid technologies. Organoclays with different surfactant loadings (SL) were synthesized using an Argentine bentonite with a high content of montmorillonite (Bent) and hexadecyltrimethylammonium bromide as cationic surfactant. The samples were characterized using thermal techniques. The results revealed that the hydrophilicity of the organoclays decreases with increasing SL until the SL reaches 0.8 times the cation exchange capacity of the clay; and remains constant at a higher surfactant load. The stability of organoclays was inversely proportional to the SL of each sample. The layers showed a stabilization of approximately 40\(^{\circ }\)C for their structural transformation temperature, caused by the presence of the surfactant. In addition, at a SL <1.0 the surfactant presented a ‘liquid-like’ structure in the interlayer space, whereas at a SL >1.0 the structure was ‘solid-like’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Yürüdü C, Isci S, Ünlü C, Atici O, Ece Ö I and Güngör N 2005 Bull. Mater. Sci.  28 623

    Article  Google Scholar 

  2. Rapacz-Kmita A, Stodolak-Zych E, Ziabka M, Rozycka A and Dudek M 2015 Bull. Mater. Sci.  38 1069

    Article  Google Scholar 

  3. Naranjo P, Molina J, Sham E L and Farfán Torres E M 2015 Quím. Nova  38 166

    Google Scholar 

  4. Saada A, Siffert B and Papirer E 1995 J. Colloid Interface Sci.  174 185

    Article  Google Scholar 

  5. He H, Ding Z, Zhu J, Yuan P, Xi Y, Yang D et al 2005 Clays Clay Miner.  53 287

    Article  Google Scholar 

  6. Onal M and Sarikaya Y 2008 J. Therm. Anal. Calorim.  91 261

    Article  Google Scholar 

  7. Joshi M, Bhattacharyya A, Agarwal N and Parmar S 2012 Bull. Mater. Sci.  35 933

    Article  Google Scholar 

  8. Nousir S, Platon N, Ghomari K, Sergentu A S, Shiao T C, Hersant G et al 2013 J. Colloid Interface Sci.  402 215

    Article  Google Scholar 

  9. Azzouz A, Nousir S, Platon N, Ghomari K, Hersant G, Bergeron J Y et al 2013 Mater. Res. Bull. 48 3466

    Article  Google Scholar 

  10. Shah K J, Mishra M K, Hukla A D, Imae T and Shah D O 2013 J. Colloid Interface Sci.  407 493

    Article  Google Scholar 

  11. Burchill S, Hall P L, Harrison R, Hayes M H B, Langford J I, Livingston W R et al 1983 Clay Miner.  18 373

    Article  Google Scholar 

  12. Anirudhan T S and Ramachandran M 2006 J. Colloid Interface Sci.  299 116

    Article  Google Scholar 

  13. Ocampo-Perez R, Leyva-Ramos R, Mendoza-Barron J and Guerrero-Coronado R M 2011 J. Colloid Interface Sci.  364 195

    Article  Google Scholar 

  14. Kan T, Jiang X, Zhou L, Yang M, Duan M, Liu P et al 2011 Appl. Clay Sci. 54 184

    Article  Google Scholar 

  15. Xin X, Si W, Yao Z, Feng R, Dua B, Yan L et al 2011 J. Colloid Interface Sci.  359 499

    Article  Google Scholar 

  16. Mahadevaiah N, Vijayakumar B, Hemalatha K and Jai Prakash B S 2011 Bull. Mater. Sci.  34 1675

    Article  Google Scholar 

  17. Sarkar M, Dana K, Ghatak S and Banerjee A 2008 Bull. Mater. Sci.  31 23

    Article  Google Scholar 

  18. Patra S K, Prusty G and Swain S 2012 Bull. Mater. Sci.  35 27

    Article  Google Scholar 

  19. Choudhury T and Misra N M 2010 Bull. Mater. Sci.  33 165

    Article  Google Scholar 

  20. Wang W, Li L and Xi S 1993 J. Colloid Interface Sci.  155 369

    Article  Google Scholar 

  21. Vaia R A, Teukolsky R K and Giannelis E P 1994 Chem. Mater.  6 1017

    Article  Google Scholar 

  22. Vidal N C and Volzone C 2009 Appl. Clay Sci.  45 227

    Article  Google Scholar 

  23. Zhu J, Qing Y, Wang T, Zhu R, Wei J, Tao Q et al 2011 J. Colloid Interface Sci.  360 386

    Article  Google Scholar 

  24. Bianchi A E, Fernández M, Pantanetti M, Viña R, Torriani I, Torres Sánchez R M et al 2013 Appl. Clay Sci.  8384 280

    Article  Google Scholar 

  25. Naranjo P M, Sham E L, Rodríguez Castellón E, Torres Sánchez R M and Farfán Torres E M 2013 Clays Clay Miner.  61 98

    Article  Google Scholar 

  26. Nayak P S and Singh B K 2007 Bull. Mater. Sci.  30 235

    Article  Google Scholar 

  27. Hlavaty V and Fajnor V S 2002 J. Therm. Anal. Calorim.  67 113

    Article  Google Scholar 

  28. Lapides I, Borisover M and Yariv S 2011 J. Therm. Anal. Calorim.  105 39

    Article  Google Scholar 

  29. Yariv S, Borisover M and Lapides I 2011 J. Therm. Anal. Calorim.  105 897

    Article  Google Scholar 

  30. Yariv S, Lapides I and Borisover M 2012 J. Therm. Anal. Calorim.  110 385

    Article  Google Scholar 

  31. Park Y, Ayoko G A, Kristof J, Horvát E and Frost R L 2012 J. Therm. Anal. Calorim.  107 1137

    Article  Google Scholar 

  32. Bergaya F and Vayer M 1997 Appl. Clay Sci.  12 275

    Article  Google Scholar 

  33. Birkenstock J, Kleemeier M, Vogt C, Wendschuh M, Hartwig A and Fischer R X 2011 Appl. Clay Sci.  54 144

    Article  Google Scholar 

  34. Zhu J, He H, Zhu L, Wen X and Deng F 2005 J. Colloid Interface Sci.  286 239

    Article  Google Scholar 

  35. Calvet R and Prost R 1971 Clays Clay Miner.  19 175

    Article  Google Scholar 

  36. Gelfer M, Burger C, Fadeev A, Sics I, Chu B, Hsiao B S et al 2004 Langmuir  20 3746

    Article  Google Scholar 

  37. Osman M A, Seyfang G and Suter U W 2000 J. Phys. Chem. B  104 4433

    Article  Google Scholar 

  38. Xi Y, Frost R L and He H 2007 J. Colloid Interface Sci.   305 150

    Article  Google Scholar 

  39. Zhu L, Zhu R, Xu L and Ruan X 2007 Colloids Surf. A  304 41

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Pharm. Pablo Corregidor for their technical assistance and clarifying discussions in DSC technique. Pablo Naranjo thanks CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M Naranjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naranjo, P.M., Sham, E.L. & Farfán Torres, E.M. Characterization of hexadecyltrimethylammonium-organoclay and its individual components by thermal techniques. Bull Mater Sci 40, 753–758 (2017). https://doi.org/10.1007/s12034-017-1417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1417-x

Keywords

Navigation