Skip to main content
Log in

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Lattice thermal conductivity (LTC) of Si bulk and nanowires (NWs) with diameter 22, 37, 50, 56, 98 and 115 nm was investigated in the temperature range 3–300 K using a modified Callaway model that contains both longitudinal and transverse modes. Using proper equations, mean bond length, lattice parameter, unit cell volume, mass density, melting temperature, longitudinal and transverse Debye temperature and group velocity for all transverse and longitudinal modes were calculated for each NW diameter mentioned. Surface roughness, Gruneisen parameter and impurity were used as adjustable parameters to fit theoretical results with experimental curves. In addition, values of electron concentration and dislocation density were determined. There are some phonon scattering mechanisms assumed, which are Umklapp and normal processes, imperfections, phonon confinement, NW boundaries, electrons scattering and dislocation. Dislocation density less than 10\(^{{14}}\) m\(^{{-2}}\) for NWs and 10\(^{{12}}\) m\(^{{-2}}\) for bulk has no effect on LTC. Also, electron concentration less than 10\(^{{22}}\) m\(^{{-3}}\) for NWs and 10\(^{{16}}\) m\(^{{-3}}\) for the bulk has no effect. On increasing dislocation density and electron concentration, LTC comparably decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lundstrom M 2003 Science 299 210

    Article  Google Scholar 

  2. Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G et al 2007 Nature 449 885

  3. Cohen G, Reuter M C, Wacaser B A and Khayyat M M 2012 Production scale fabrication method for high resolution AFM tips Google Patents

  4. Balandin A and Wang K L 1998 Phys. Rev. B 58 1544

    Article  Google Scholar 

  5. Zou J and Balandin A 2001 J. Appl. Phys. 89 2932

    Article  Google Scholar 

  6. Li D, Wu Y, Kim P, Shi L, Yang P and Majumdar A 2003 Appl. Phys. Lett. 83 2934

    Article  Google Scholar 

  7. Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M et al 2008 Nature 451 163

  8. Zou J 2010 J. Appl. Phys. 108 034324

    Article  Google Scholar 

  9. Mingo N 2003 Phys. Rev. B 68 113308

    Article  Google Scholar 

  10. Yang R, Chen G and Dresselhaus M S 2005 Phys. Rev. B 72 125418

    Article  Google Scholar 

  11. Lacroix D, Joulain K, Terris D and Lemonnier D 2006 Appl. Phys. Lett. 89 103104

    Article  Google Scholar 

  12. Bera C 2012 J. Appl. Phys. 112 074323

    Article  Google Scholar 

  13. Omar M and Taha H 2010 Sadhana 35 177

    Article  Google Scholar 

  14. Huang M-J, Chong W-Y and Chang T-M 2006 J. Appl. Phys. 99 114318

    Article  Google Scholar 

  15. Callaway J 1959 Phys. Rev. 113 1046

    Article  Google Scholar 

  16. Khitun A, Balandin A and Wang K 1999 Superlattices Microstruct. 26 181

    Article  Google Scholar 

  17. Morelli D, Heremans J and Slack G 2002 Phys. Rev. B 66 195304

    Article  Google Scholar 

  18. Asen-Palmer M, Bartkowski K, Gmelin E, Cardona M, Zhernov A, Inyushkin A et al 1997 Phys. Rev. B 56 9431

    Article  Google Scholar 

  19. Holland M 1963 Phys. Rev. 132 2461

    Article  Google Scholar 

  20. Mamand S, Omar M and Muhammad A 2012 Mater. Res. Bull. 47 1264

    Article  Google Scholar 

  21. Herring C 1954 Phys. Rev. 95 954

    Article  Google Scholar 

  22. Omar M 2007 Mater. Res. Bull. 42 319

    Article  Google Scholar 

  23. Omar M 2016 Int. J. Thermophys. 37 1

    Article  Google Scholar 

  24. Klemens P 1955 Proc. Phys. Soc. Sec. A 68 1113

    Article  Google Scholar 

  25. Pudalov V, Gershenson M, Kojima H, Butch N, Dizhur E, Brunthaler G et al 2002 Phys. Rev. Lett. 88 196404

    Article  Google Scholar 

  26. Casimir H 1938 Physica 5 495

    Article  Google Scholar 

  27. Vandersande J 1977 Phys. Rev. B 15 2355

    Article  Google Scholar 

  28. Omar M and Taha H 2009 Phys. B Condens. Matter 404 5203

  29. Omar M 2012 Mater. Res. Bull. 47 3518

  30. Liang L and Li B 2006 Phys. Rev. B 73 153303

    Article  Google Scholar 

  31. Dash J 1999 Rev. Mod. Phys. 71 1737

    Article  Google Scholar 

  32. Post E 1953 Can. J. Phys. 31 112

    Article  Google Scholar 

  33. Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503

    Article  Google Scholar 

  34. Ziman J M 1960 Electrons and phonons: the theory of transport phenomena in solids (Oxford: Oxford University Press)

  35. Vandersande J and Wood C 1986 Contemp. Phys. 27 117

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Faculty of Science, University of Raparin in Rania/Sulaimani, Iraqi Kurdistan, Iraq (IB16), and S M Mamand, N M Saeed and Jawameer R Hama for their scientific explanation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim N Qader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qader, I.N., Omar, M.S. Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bull Mater Sci 40, 599–607 (2017). https://doi.org/10.1007/s12034-017-1393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1393-1

Keywords

Navigation