Skip to main content
Log in

Dependence of the textural properties and surface species of ZnO photocatalytic materials on the type of precipitating agent used in the hydrothermal synthesis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Three different precipitating agents (NaOH, \(\hbox {NH}_{4}(\hbox {H})\hbox {CO}_{3}\) and \(\hbox {CO}(\hbox {NH}_{2})_{2}\)) have been applied for the hydrothermal synthesis of ZnO powder materials, aiming at obtaining various types of porosity and surface species on ZnO. The synthesis procedures were carried out in the presence and in the absence of tri-block copolymer Pluronic (P123, EO20PO70EO20). These materials were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM)–energy-dispersive X-ray spectroscopy (EDX), BET method and TG–differential thermal analysis (DTA) method, and their photocatalytic activities were tested in the removal azo dye Reactive Black 5 (RB5). The urea precipitant yields spongy-like surface forms and the greatest share of mesopores. It has the highest specific surface area, highest degree of crystallinity of wurtzite ZnO phase and largest content of surface OH groups in comparison with the other two precipitants. The zinc hydroxycarbonate intermediate phase is missing in the case of NaOH as precipitating agent; therefore, it manifests poorer textural characteristics. The morphology of P123-modified sample is different and consists of needle-shaped particles. The urea-precipitated samples display superior performance in the photocatalytic oxidation reaction, compared with the other precipitated samples. The other two precipitating agents are inferior in regard to their photocatalytic activity due to greater share of micropores (not well-illuminated inner surface) and different surface morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sakthivel S, Neppolian B, Shankar M V, Arabindoo B, Palanichamy M and Murugesan V 2003 Sol. Energy Mater. Sol. Cells  77 65

    Article  Google Scholar 

  2. Kiomarsipour N, Razavi R S, Ghani K and Kioumarsipour M 2013 Appl. Surf. Sci.  270 33

    Article  Google Scholar 

  3. Stambolova I, Blaskov M, Shipochka M, Vassilev S, Dushkin C and Dimitriev Y 2010 Mater. Chem. Phys.  121 447

    Article  Google Scholar 

  4. de Lima J F, Martins R F and Serra O A Opt. Mater. 35 56

  5. Stambolova I, Blaskov V, Kaneva N, Shipochka M, Vassilev S, Dimitrov O et al 2014 Mater. Sci. Semicond. Proc. 25 244

    Article  Google Scholar 

  6. Suwanboon S and Amornpitoksuk P 2011 Ceram. Int.  37 3515

    Article  Google Scholar 

  7. Athma P V, Martinez A I, Johns N, Safeera T A, Reshmi R and Anila E I 2015 Superlattices Microstruct. 85 379

    Article  Google Scholar 

  8. Khalil M I, Al-Qunaibit M M, Al-zahem A M and Labis J P 2014 Arab. J. Chem. 7 1178

    Article  Google Scholar 

  9. Nishizawa H, Tani T and Matsuoka K 1984 J. Am. Ceram. Soc. 67 c98

    Article  Google Scholar 

  10. Pudukudy M and Yaakob Z 2014 Solid State Ion. 30 78

    Google Scholar 

  11. Chen C C, Liu P and Lu C 2008 Chem. Eng. J. 144 509

    Article  Google Scholar 

  12. Zhang Y, Dai J Y, Ong H C, Wang N, Chan H L W and Choy C L 2004 Chem. Phys. Lett. 393 17

    Article  Google Scholar 

  13. Abdel Aal N, Al-Hazmi F, Al-Ghamdi A A, Al-Ghamdi A A, El-Tantawy F and Yakuphanoglu F 2015 Spectrochim. Acta Part A 135 871

    Article  Google Scholar 

  14. Wang J M and Gao L 2004 Solid State Commun. 132 269

    Article  Google Scholar 

  15. Ni Y H, Wei X W, Hong J M and Ye Y 2005 Mater. Sci. Eng. B 121 42

    Article  Google Scholar 

  16. Eliyas A, Stambolova I, Blaskov V, Stoyanova D, Milenova K, Dimitrov L et al 2015 Bulg. Chem. Commun. 47 94

    Google Scholar 

  17. Stambolova I, Blaskov V, Stoyanova D, Dimitrov L, Milenova K, Eliyas A et al 2015 C. R. Acad. Bulg. Sci. 68 463

    Google Scholar 

  18. Hussain S, Liu T, Miao B, Kashif M, Aslam N, Rashad M et al 2015 Ceram. Int. 41 4861

    Article  Google Scholar 

  19. Liu I-H and Chen P 2010 Ceram. Int. 36 1289

    Article  Google Scholar 

  20. Miao Y, Zhang H, Yuan S, Jiao Z and Zhu X 2016 J. Colloid Interface Sci. 462 9

    Article  Google Scholar 

  21. Zhang Z and Mu J 2007 J. Colloid Interface Sci. 307 79

    Article  Google Scholar 

  22. Zheng J H, Jiang Q and Lian J S 2011 Appl. Surf. Sci. 257 5083

    Article  Google Scholar 

  23. Moulder J F, Stickle W F, Sobol P E and Bomben K D 1992 In Handbook of X-ray photoelectron spectroscopy J Chastain (ed) (Eden Prairie: Perkin-Elmer Corporation) p 89

  24. Das J, Pradhan S K, Sahu D R, Mishra D K, Sarangi S N, Nayak B B et al 2010 Phys. B 405 2492

    Article  Google Scholar 

  25. Wang H H and Xie C S 2008 Phys. E 40 2724

    Article  Google Scholar 

  26. Wang H H, Baek S H, Song J J, Lee J H and Lim S W 2008 Nanotechnology 19 art. no. 075607

  27. Al-Gaashani R, Radiman S, Daud A R, Tabet N and Al-Douri Y 2013 Ceram. Int. 39 2283

    Article  Google Scholar 

  28. Hu S-H, Chen Y-C, Hwang C-C, Peng C-H and Gong D-C 2010 J. Mater. Sci. 45 5309

    Article  Google Scholar 

  29. Lamba R, Umar A, Mehta S K and Kansal S K 2015 Talanta 131 490

    Article  Google Scholar 

  30. Baruah S, Mahmood M A, Myint M I Z, Bora T and Dutta J 2010 Beilstein J. Nanotechnol. 1 14

    Article  Google Scholar 

  31. Bacsa R R and Kiwi J 1998 Appl. Catal. B 16 19

    Article  Google Scholar 

  32. Li D and Haneda H 2003 Chemosphere 51 129

    Article  Google Scholar 

  33. Yu J C, Yu J and Zhao J 2002 Appl. Catal. B Environ. 36 31

    Article  Google Scholar 

  34. Hoffmann M R, Martin S T, Choi W and Bahnemann D 1995 Chem. Rev. 95 69

    Article  Google Scholar 

  35. Yang C, Li Q, Tang L, Xin K, Bai A and Yu Y 2015 Appl. Surf. Sci. 357 1928

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to EBR SANI for the financial support through the contract ‘Development of advanced catalytic systems applicable to chemical and photochemical processes for neutralization of environmental pollutions’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Stambolova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stambolova, I., Blaskov, V., Stoyanova, D. et al. Dependence of the textural properties and surface species of ZnO photocatalytic materials on the type of precipitating agent used in the hydrothermal synthesis. Bull Mater Sci 40, 483–492 (2017). https://doi.org/10.1007/s12034-017-1389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1389-x

Keywords

Navigation