Ultrasonic-assisted fabrication of superhydrophobic ZnO nanowall films


Zinc oxide-based superhydrophobic surfaces were fabricated on aluminium oxide-seeded glass substrates via sonochemical approach by varying the parameter, the sonication time duration. The fabricated structures have nanowall-like morphology with an average long axis length and thickness of \({\sim }300\) and \({\sim }40~\hbox {nm}\), respectively.  The surface roughness created by surface-modified ZnO nanowalls and the air pockets trapped within the dense nanowalls, transformed the hydrophobic glass substrates into superhydrophobic surfaces with water contact angle of \(156{^{\circ }}\) during 20 min of sonication. An independent analysis was carried out to study the growth of ZnO nanowalls over glass substrates in the absence of the aluminium oxide seed layer and sonication process. The results suggested that the synergistic effect of the aluminium oxide seed layer and sonochemical process can enable the formation of ZnO nanowall structures favourable for superhydrophobic property. A possible growth mechanism of ZnO nanowalls formation during sonication process has been discussed in detail.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Yu S, Guo Z and Liu W 2015 ChemCommun. 51 1775

    Google Scholar 

  2. 2.

    Jung S-H, Oh E, Lee K-H, Park W and Jeong S-H 2007 Adv. Mater.  19 749

    Article  Google Scholar 

  3. 3.

    Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A and Guebitz G M 2009 Appl. Mater. Interfaces 1 361

    Article  Google Scholar 

  4. 4.

    Oh E, Choi H-Y, Jung S-H, Cho S, Kim J C, Lee K-H et al 2009 Sens. Actuators B  141 239

    Article  Google Scholar 

  5. 5.

    Nayak A P, Katzenmeyer A M, Kim J-Y, Kwon M K, Gosho Y and Islam M S 2010 Proc. SPIE  7683 768312

    Article  Google Scholar 

  6. 6.

    Okyay T O, Bala R K, Nguyen H N, Atalay R, Bayam Y and Rodrigues D F 2015 RSC Adv. 5 2568

    Article  Google Scholar 

  7. 7.

    Wang T, Liu Y, Li G, Sun Z, Lu J, Liu B et al 2011 CrystEngComm. 13 2661

    Article  Google Scholar 

  8. 8.

    Yu J, Li Q, Hao Y F, Kuang S Y, Bai X D, Chong Y M et al 2010 ACS Nano 4 414

    Article  Google Scholar 

  9. 9.

    Tang J-F, Su H-H, Lu Y-M and Chu S-Y 2015 CrystEngComm. 17 592

    Article  Google Scholar 

  10. 10.

    Suslick K S, Gawienowski J J, Schubert P F and Wang H H 1984 Ultrasonics 22 33

  11. 11.

    Lee G-H 2010 Ceram. Int. 36 1871

    Article  Google Scholar 

  12. 12.

    Yu H, Zhang Z, Han M, Hao X and Zhu F 2005 J. Am. Chem. Soc. 127 2378

    Article  Google Scholar 

  13. 13.

    Mason T J 1986 Ultrasonics 24 245

    Article  Google Scholar 

  14. 14.

    Yuan Y and Lee T R 2013 Surface science techniques Bracco G and Holst B (ed) (Berlin Heidelberg: Springer) p 3

  15. 15.

    Peltonen J, Jarn M, Areva S, Linden M and Rosenholm J B 2004 Langmuir 20 9428

    Article  Google Scholar 

  16. 16.

    Gurav A B, Latthe S S and Vhatkar R S 2013 Surf. Innov. 1 176

    Article  Google Scholar 

  17. 17.

    Guo Z, Chen X, Li J, Liu J H and Huang X J 2011 Langmuir 27 6193

    Article  Google Scholar 

Download references


This work was financially supported by DST–SERB, Government of India, under JC Bose National Fellowship (File. No. SR/S2/JCB-58/2011, 28.11.2011).

Author information



Corresponding author

Correspondence to K R Ravi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sutha, S., Kumar, R.T.R., Raj, B. et al. Ultrasonic-assisted fabrication of superhydrophobic ZnO nanowall films. Bull Mater Sci 40, 505–511 (2017). https://doi.org/10.1007/s12034-017-1385-1

Download citation


  • Zinc oxide nanowalls
  • sonication
  • superhydrophobicity