Bulletin of Materials Science

, Volume 40, Issue 3, pp 505–511 | Cite as

Ultrasonic-assisted fabrication of superhydrophobic ZnO nanowall films

  • S Sutha
  • R T Rajendra Kumar
  • Baldev Raj
  • K R Ravi
Article
  • 73 Downloads

Abstract

Zinc oxide-based superhydrophobic surfaces were fabricated on aluminium oxide-seeded glass substrates via sonochemical approach by varying the parameter, the sonication time duration. The fabricated structures have nanowall-like morphology with an average long axis length and thickness of \({\sim }300\) and \({\sim }40~\hbox {nm}\), respectively.  The surface roughness created by surface-modified ZnO nanowalls and the air pockets trapped within the dense nanowalls, transformed the hydrophobic glass substrates into superhydrophobic surfaces with water contact angle of \(156{^{\circ }}\) during 20 min of sonication. An independent analysis was carried out to study the growth of ZnO nanowalls over glass substrates in the absence of the aluminium oxide seed layer and sonication process. The results suggested that the synergistic effect of the aluminium oxide seed layer and sonochemical process can enable the formation of ZnO nanowall structures favourable for superhydrophobic property. A possible growth mechanism of ZnO nanowalls formation during sonication process has been discussed in detail.

Keywords

Zinc oxide nanowalls sonication superhydrophobicity 

References

  1. 1.
    Yu S, Guo Z and Liu W 2015 ChemCommun. 51 1775Google Scholar
  2. 2.
    Jung S-H, Oh E, Lee K-H, Park W and Jeong S-H 2007 Adv. Mater.  19 749CrossRefGoogle Scholar
  3. 3.
    Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A and Guebitz G M 2009 Appl. Mater. Interfaces 1 361CrossRefGoogle Scholar
  4. 4.
    Oh E, Choi H-Y, Jung S-H, Cho S, Kim J C, Lee K-H et al 2009 Sens. Actuators B  141 239CrossRefGoogle Scholar
  5. 5.
    Nayak A P, Katzenmeyer A M, Kim J-Y, Kwon M K, Gosho Y and Islam M S 2010 Proc. SPIE  7683 768312CrossRefGoogle Scholar
  6. 6.
    Okyay T O, Bala R K, Nguyen H N, Atalay R, Bayam Y and Rodrigues D F 2015 RSC Adv. 5 2568CrossRefGoogle Scholar
  7. 7.
    Wang T, Liu Y, Li G, Sun Z, Lu J, Liu B et al 2011 CrystEngComm. 13 2661CrossRefGoogle Scholar
  8. 8.
    Yu J, Li Q, Hao Y F, Kuang S Y, Bai X D, Chong Y M et al 2010 ACS Nano 4 414CrossRefGoogle Scholar
  9. 9.
    Tang J-F, Su H-H, Lu Y-M and Chu S-Y 2015 CrystEngComm. 17 592CrossRefGoogle Scholar
  10. 10.
    Suslick K S, Gawienowski J J, Schubert P F and Wang H H 1984 Ultrasonics 22 33Google Scholar
  11. 11.
    Lee G-H 2010 Ceram. Int. 36 1871CrossRefGoogle Scholar
  12. 12.
    Yu H, Zhang Z, Han M, Hao X and Zhu F 2005 J. Am. Chem. Soc. 127 2378CrossRefGoogle Scholar
  13. 13.
    Mason T J 1986 Ultrasonics 24 245CrossRefGoogle Scholar
  14. 14.
    Yuan Y and Lee T R 2013 Surface science techniques Bracco G and Holst B (ed) (Berlin Heidelberg: Springer) p 3Google Scholar
  15. 15.
    Peltonen J, Jarn M, Areva S, Linden M and Rosenholm J B 2004 Langmuir 20 9428CrossRefGoogle Scholar
  16. 16.
    Gurav A B, Latthe S S and Vhatkar R S 2013 Surf. Innov. 1 176CrossRefGoogle Scholar
  17. 17.
    Guo Z, Chen X, Li J, Liu J H and Huang X J 2011 Langmuir 27 6193CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • S Sutha
    • 1
  • R T Rajendra Kumar
    • 2
  • Baldev Raj
    • 3
  • K R Ravi
    • 1
  1. 1.PSG Institute of Advanced StudiesCoimbatoreIndia
  2. 2.Department of Nanoscience and TechnologyBharathiar UniversityCoimbatoreIndia
  3. 3.National Institute of Advance StudiesBangaloreIndia

Personalised recommendations