Skip to main content

Advertisement

Log in

Visible-light-induced hydrogen evolution reaction with WS x Se2−x

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

WS2 is a promising catalyst for the hydrogen evolution reaction. We have explored photocatalytic properties of ternary sulphoselenides of tungsten (WS x Se 2−x ) by the dye-sensitized hydrogen evolution. WS x Se 2−x solid solutions are found to exhibit high activity reaching 2339 μmol h−1 g−1 for WSSe, which is three times higher than that of WS2 alone (866 μmol h−1 g−1 ). The turnover frequency is also high (0.7 h−1 ). Such synergistic effect of selenium substitution in WS2 is noteworthy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chhowalla M, Shin H S, Eda G, Li L, Loh K P and Zhang H 2013 Nat. Chem. 5 63

    Article  Google Scholar 

  2. Rao C N R, Maitra U and Waghmare U V 2014 Chem. Phys. Lett. 609 172

    Article  Google Scholar 

  3. Rao C N R, Matte H S S R and Maitra U 2013 Angew. Chem. Int. Ed. 52 13162

    Article  Google Scholar 

  4. Rao C N R and Maitra U 2015 Annu. Rev. Mater. Res. 45 29

    Article  Google Scholar 

  5. Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147

    Article  Google Scholar 

  6. Late D J, Liu B, Matte H S S R, Dravid V P and Rao C N R 2012 ACS Nano 6 5635

    Article  Google Scholar 

  7. Chen J, Wu X-J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C and Zhang H 2015 Angew. Chem. Int. Ed. 127 1226

    Article  Google Scholar 

  8. Maitra U, Gupta U, De M, Datta R, Govindaraj A and Rao C N R 2013 Angew. Chem. Int. Ed. 52 13057

    Article  Google Scholar 

  9. Gupta U, Naidu B S, Maitra U, Singh A, Shirodkar S N, Waghmare U V and Rao C N R 2014 APL Mater. 2 092802

    Article  Google Scholar 

  10. Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P and Rao C N R 2013 ACS Nano 7 4879

    Article  Google Scholar 

  11. Lauritsen J V, Kibsgaard J, Helveg S, Topsoe H, Clausen B S, Laegsgaard E and Besenbacher F 2007 Nat. Nanotechnol. 2 53

    Article  Google Scholar 

  12. Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100

    Article  Google Scholar 

  13. Eng A Y S, Ambrosi A, Sofer Z, Simek P and Pumera M 2014 ACS Nano 8 12185

    Article  Google Scholar 

  14. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B and Xie Y 2013 J. Am. Chem. Soc. 135 17881

    Article  Google Scholar 

  15. Liu N, Kim P, Kim J H, Ye J H, Kim S and Lee C J 2014 ACS Nano 8 6902

    Article  Google Scholar 

  16. Faber M S and Jin S 2014 Energy Environ. Sci. 7 3519

    Article  Google Scholar 

  17. Chettri M, Gupta U, Yadgarov L, Rosentveig R, Tenne R and Rao C N R 2015 Dalton Trans. 44 16399

    Article  Google Scholar 

  18. Merki D, Vrubel H, Rovelli L, Fierro S and Hu X 2012 Chem. Sci. 3 2515

    Article  Google Scholar 

  19. Kiran V, Mukherjee D, Jenjeti R N and Sampath S 2014 Nanoscale 6 12856

    Article  Google Scholar 

  20. Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H and Yan Q 2014 J. Mater. Chem. A 2 5597

    Article  Google Scholar 

  21. Zhang X, Meng F, Mao S, Ding Q, Shearer M J, Faber M S, Chen J, Hamers R J and Jin S 2015 Energy Environ. Sci. 8 862

    Article  Google Scholar 

  22. Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L and Yu T 2014 Adv. Opt. Mater. 2 131

    Article  Google Scholar 

  23. Berkdemir A, Gutierrez H R, Botello-Mendez A R, Perea-Lopez N, Elias A L, Chia C-I, Wang B, Crespi V H, Lopez-Urias F, Charlier J-C, Terrones H and Terrones M 2013 Sci. Rep. 3 1755

    Article  Google Scholar 

  24. Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Mallouk T E, Lopez-Urias F, Terrones H and Terrones M 2013 ACS Nano 7 5235

    Article  Google Scholar 

  25. Nakamura K, Fujitsuka M and Kitajima M 1990 Phys. Rev. B 41 12260

    Article  Google Scholar 

  26. Gouadec G and Colomban P 2007 Prog. Cryst. Growth Charact., Mater. 53 1

    Google Scholar 

  27. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nano Lett. 13 222

    Article  Google Scholar 

  28. Somorjai G A 2002 Topics Catal. 18 158

    Article  Google Scholar 

  29. Wang F, Li J, Wang F, Shifa T K A, Cheng Z, Wang Z, Xu K, Zhan X, Wang Q, Huang Y, Jiang C and He J 2015 Adv. Funct. Mater. 25 6077

    Article  Google Scholar 

  30. Xu K, Wang F, Wang Z, Zhan X, Wang Q, Cheng Z, Safdar M and He J 2014 ACS Nano 8 8468

    Article  Google Scholar 

  31. Fu Q, Yang L, Wang W, Han A, Huang J, Du P, Fan Z, Zhang J and Xiang B 2015 Adv. Mater. 27 4732

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Prof C N R Rao, FRS, for his constant guidance, support and encouragement. We would also like to thank Sonu K P for BET measurements. DSN is thankful to DST, Government of India, for the award of the post-doctoral fellowship for nanoscience and nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to UTTAM GUPTA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUPTA, U., NARANG, D.S. Visible-light-induced hydrogen evolution reaction with WS x Se2−x . Bull Mater Sci 40, 329–333 (2017). https://doi.org/10.1007/s12034-017-1377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1377-1

Keywords

Navigation