Skip to main content
Log in

Structural, optical and morphological studies of undoped and Zn-doped CdSe QDs via aqueous route synthesis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Undoped and Zn-doped CdSe quantum dots (QDs) were successfully synthesized by the chemical precipitation method. The structural, optical and morphological properties of the synthesized undoped and Zn-doped CdSe QDs were studied by X-ray diffraction (XRD), UV–visible absorption spectroscopy, photoluminescence (PL) spectroscopy, fluorescence lifetime spectroscopy, scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and FTIR. The synthesized undoped and Zn-doped CdSe QDs were in cubic crystalline phase, which was confirmed by the XRD technique. From the UV–visible absorption spectral analysis, the absorption wavelengths of both undoped and Zn-doped CdSe QDs show blue-shift with respect to their bulk counterpart as a result of quantum confinement effect. The highest luminescence intensity was observed for CdSe QDs doped with 4% Zn by PL studies. TEM analysis shows that the prepared QDs are spherical in shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sun S, Murrary C B, Weller D, Folks L and Moser A 2000 Science 287 1989

    Article  Google Scholar 

  2. Michler P, Imamoglu A, Mason M D, Carson P J, Strouse G F and Buratto S K 2000 Nature 406 968

    Article  Google Scholar 

  3. Noh M, Kim T, Lee H, Kim C K, Joo S W and Lee K 2010 Colloids Surf. A: Physicochem. Eng. Aspects 359 39

    Article  Google Scholar 

  4. Greenham N C, Peng X G and Alivisatos A P 1996 Phys. Rev. B 54 17628

    Article  Google Scholar 

  5. Huynh W U, Peng X G and Alivisatos A P 1999 Adv. Mater. 11 923

    Article  Google Scholar 

  6. Screuder M A, Gosnell J D, Smith N J, Warnement M R, Weiss S M and Rosenthal S J 2008 J. Mater. Chem. 18 970

    Article  Google Scholar 

  7. Haldar K K, Sinha G, Lahtinen J and Patra A 2012 ACS Appl. Mater. Interfaces 4 6266

    Article  Google Scholar 

  8. Selvan S T, Tan T T Y, Yi D K and Jana N R 2010 Langmuir 26 11631

    Article  Google Scholar 

  9. Beloglazova N V, Goryacheva I Y, Niessner R and Knop D 2011 Microchim. Acta 175 361

    Article  Google Scholar 

  10. Trapiella-Alfonso L, Costa-Fernández J M, Pereiro R and Sanz-Medel A 2011 Biosens. Bioelectron. 26 4753

    Article  Google Scholar 

  11. Somers R C, Bawendi M G and Nocera D G 2007 Chem. Soc. Rev. 36 579

    Article  Google Scholar 

  12. Wang X and Guo X Q 2009 Analyst 134 248

    Google Scholar 

  13. Song L and Zhang S 2011 Chem. Eng. J. 166 779

    Article  Google Scholar 

  14. Peng Z A and Peng X G 2001 J. Am. Chem. Soc. 123 183

    Article  Google Scholar 

  15. Murray C B, Noms D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706

    Article  Google Scholar 

  16. Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmüller A and Weller H 2002 J. Phys. Chem. B 106 7177

    Article  Google Scholar 

  17. Rong X L, Zhao Q and Tao G H 2002 Chin. Chem. Lett. 23 961

    Article  Google Scholar 

  18. Rogach A L, Negesha D and Ostrander J W 2000 Chem. Mater. 12 2676

    Article  Google Scholar 

  19. Wang C L, Zhang H and Zhang J H 2007 J. Phys. Chem. C 111 2465

    Article  Google Scholar 

  20. Wu Y L, He F, He X W, Li W Y and Zhang Y K 2008 Spectrochim. Acta A 71 1199

    Article  Google Scholar 

  21. Deng D W, Yu J S and Pan Y J 2006 J. Colloid Interface Sci. 299 225

    Article  Google Scholar 

  22. Chang W G, Shen Y H, Xie A J, Zhang H, Wang J and Lu W S 2009 J. Colloid Interface Sci. 335 257

    Article  Google Scholar 

  23. Novoselova A V and Lazarev V B 1979 Physicochemical properties of semiconducting materials (Moscow: Nauka)

    Google Scholar 

  24. Ekimov A I, Hache F, Schanneklein M C, Ricard D, Flytzanis C, Kudryavtsev I A, Yazeva T V, Rodina A V and Efros A L 1993 J. Opt. Soc. Am. B 10 100

    Article  Google Scholar 

  25. Chowdhury S, Ahmed G A, Mohanta D, Dolui S K, Avasthi D K and Choudhury A 2005 Nucl. Instr. Meth. Phys. Res. B 240 690

    Article  Google Scholar 

  26. Chestnoy N, Harris T D, Hull R and Brus L E 1986 J. Phys. Chem. 90 3393

    Article  Google Scholar 

  27. Yang P, Lu M K, Song C F, Xu D, Yuan D R, Cheng X F and Zhou G J 2002 Opt. Mater. 20 141

    Article  Google Scholar 

  28. Wehrenberg L B, Congjun W and Guyot-Sionnest P 2002 J. Phys. Chem. B 106 10634

    Article  Google Scholar 

  29. Javier A, Magana D, Jennings T and Strouse G F 2003 Appl. Phys. Lett. 83 1423

    Article  Google Scholar 

  30. Qu L and Peng X 2002 J. Am. Chem. Soc. 124 2049

    Article  Google Scholar 

  31. Chen W, Bovin J O, Joly A G, Wang S, Su F and Li G 2004 J. Phys. Chem. B 108 11927

    Article  Google Scholar 

  32. Wang X, Qu L, Zhang J, Peng X and Xiao M 2003 Nano Lett. 3 1103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D GOVINDARAJAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

THIRUGNANAM, N., GOVINDARAJAN, D. Structural, optical and morphological studies of undoped and Zn-doped CdSe QDs via aqueous route synthesis. Bull Mater Sci 39, 1775–1781 (2016). https://doi.org/10.1007/s12034-016-1331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1331-7

Keywords

Navigation