Skip to main content
Log in

Microstructure and wear behaviour of FeAl-based composites containing in-situ carbides

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Iron aluminides containing carbon are promising materials for tribological applications. Because of graphite formation at higher (>20 wt%) Al-contents the addition of carbon to FeAl-based alloys has not been successful. The graphite precipitation may be avoided by addition of Zr or Ti. Dry sliding wear behaviour of FeAl-based alloys containing 1–1.5 wt% carbon with quaternary addition of Ti or Zr has been studied using ball-on-disk wear test. Effect of sliding speeds and applied loads is investigated and correlated with mechanical properties. Wear resistance of FeAl-based alloys is found to be significantly improved on addition of Ti /Zr. This is attributed to the high hardness of alloy carbides. The lower load-bearing capacity of graphite flakes in localized region was found to increase the wear rate of the alloy. The carbides such as Fe 3 AlC 0 . 5 , TiC and ZrC are embedded in the matrix after sliding wear without destruction or delamination. This significantly affects the wear resistance of FeAl-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Deevi S C and Sikka V K 1996 Intermetallics 4 357

    Article  Google Scholar 

  2. Mckamey C G and Stoloff N S 1996 in: Physical metallurgy and processing of intermetallic compounds (eds) N S Stoloff and V K Sikka p 351

  3. Prakash U 2008 Trans. Indian Inst. Met. 61 193

    Article  Google Scholar 

  4. Prakash U and Sauthoff G 2001 Scr. Mater. 44 73

    Article  Google Scholar 

  5. Sundar R S and Deevi S C 2003 Metall. Mater. Trans. A 34 2233

    Article  Google Scholar 

  6. Alman D E, Hawk J A, Tylczak J H, Dogan C P and Wilson R D 2001 Wear 251 875

    Article  Google Scholar 

  7. Radhakrishna A, Baligidad R G and Sarma D S 2001 Scr. Mater. 45 1077

    Article  Google Scholar 

  8. Kopecek J, Hausild P, Jurek K, Jarosova M, Drahokoupil J, Novak P and Sima V 2010 Intermetallics 18 1327

    Article  Google Scholar 

  9. Kuzucu V, Aksoy M and Korkut M H 1998 J. Process. Technol. 82 165

    Article  Google Scholar 

  10. Kant R, Prakash U, Agarwala V and Satyaprasad V V 2015 Trans. Indian Inst. Met. 10.1007/s12666-015-0567-z

  11. Guan X, Iwasaki K, Kishi K, Yamamoto M and Tanaka R 2004 Mater. Sci. Eng. A 366 127

    Article  Google Scholar 

  12. Kant R, Prakash U, Agarwala V and Satyaprasad V V 2015 Intermetallics 61 21

    Article  Google Scholar 

  13. Zhang X, Ma J, Yang J, Bi Q and Liu W 2011 Wear 271 881

    Article  Google Scholar 

  14. Palm M and Sauthoff G 2004 Intermetallics 12 1345

    Article  Google Scholar 

  15. Stein F, Sauthoff G and Palm M 2004 Z. Metallkd. 95 469

    Article  Google Scholar 

  16. Kratochvila P, Dobes F, Pesicka J, Malek P, Bursik J, Vodickova V and Hanus P 2012 Mater. Sci. Eng. A 548 175

    Article  Google Scholar 

  17. Hawk J A and Alman D E 1993 Wear 225–229 544

    Google Scholar 

  18. Mosbah A Y, Wexler D and Calka A 2005 Wear 258 1337

    Article  Google Scholar 

  19. Subramanian R and Schneibel J H 1998 Mater. Sci. Eng. A 244 103

    Article  Google Scholar 

  20. Aikin R M 1997 J. Min. Met. Mater. Soc. 49 35

    Article  Google Scholar 

  21. Raghunath C, Bhat M S and Rohatgi P K 1995 Scr. Metall. 32 577

    Article  Google Scholar 

  22. Terry B S and Chinyamakobvu O S 1991 J. Mater. Sci. Lett. 10 628

    Article  Google Scholar 

  23. Palm M 2005 Intermetallics 13 1286

    Article  Google Scholar 

  24. Qiu J, Baker I, Kennedy F E, Liu Y and Munroe P R 2013 Intermetallics 40 19

    Article  Google Scholar 

  25. Houska C R 1964 J. Phys. Chem. Solids 25 359

    Article  Google Scholar 

  26. Subramanian R and Schniebel J H 1997 J. Min. Met. Mater. Soc. 49 50

    Article  Google Scholar 

  27. Kim Y S and Kim Y H 1998 Mater. Sci. Eng. A 258 319

    Article  Google Scholar 

Download references

Acknowledgement

This research has been supported by the Department of Science and Technology, New Delhi, and we are thankful for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAVI KANT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KANT, R., PRAKASH, U., AGARWALA, V. et al. Microstructure and wear behaviour of FeAl-based composites containing in-situ carbides. Bull Mater Sci 39, 1827–1834 (2016). https://doi.org/10.1007/s12034-016-1326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1326-4

Keywords

Navigation