Abstract
Ternary palladates CaPd3O4 and SrPd3O4 have been studied theoretically using density functional theory approach. The calculated structural properties are consistent with the experimental findings. Mechanical properties show that these compounds are elastically stable, anisotropic and ductile in nature. The electronic properties reveal that they are narrow band gap semiconductors with band gaps 0.12 and 0.10 eV, correspondingly. Both materials are optically active in the infrared ranges of the electromagnetic spectrum. Narrow band gap semiconductors are efficient thermoelectric (TE) materials; therefore, TE properties are also studied and discussed. Furthermore, DFT and post-DFT calculations confirm the paramagnetic nature of these compounds.
This is a preview of subscription content, access via your institution.








References
Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152
Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D et al 2006, J. Appl. Phys. 99 023708
Taniguchi T, Nagata Y, Ozawa T C, Sato M, Noro Y, Uchida T and Samata H 2004 J. Alloys Compd. 373 67
Ozawa T C, Matsushita A, Hidaka Y, Taniguchi T, Mizusaki S, Nagata Y et al 2008, J. Alloys Compd. 448 77
Hase I and Nishihara Y 2000 Phys. Rev. B 62 13426
Cahen D, Ibers J A and Shannoni R D 1972 Inorg. Chem. 11 2311
Ichikawa S and Terasaki I 2003 Phys. Rev. B 68 233101
Smallwood P L, Smith M D and Loye H C Z 2000 J. Cryst. Growth 216 299
Wnuk R C, Touw T R and Post B 1964 J. Res. Dev. 8 185
Itoh K and Tsuda N 1999 Solid State Commun. 109 715
Wang Y, Walker D, Chen B H and Scott B A 1999 J. Alloys Compd. 285 98
Muller O and Roy R 1971 Adv. Chem. 98 28
Singh D 1994 Plane wave pseudo-potential and LAPW method (Bosten, Dortrecht, London: Kluwer Academic Publishers)
Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2014 WIEN2k: an augmented plane waves plus local orbitals program for calculating crystal properties, WIEN2k 14.2 (Vienna, Austria: Institute of Physical and Theoretical Chemistry, Vienna University of Technology)
Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Koller D, Tran F and Blaha P 2012 Phys. Rev. B 85 155109
Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
Kervan N 2012 J. Magn. Magn. Mater. 324 4114
Jamal M, Asadabadi S J, Ahmad I and Aliabad H A R 2014 Comput. Mater. Sci. 95 592
Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244
Samata H, Tanaka S, Mizusaki S, Nagata Y, Ozawa T C, Sato A and Kosuda K 2012 J. Crystallization Process Technol. 2 16
Ali Z, Abdul Sattar A, Asadabadi S J and Ahmad I 2015 , J. Phys. Chem. Solids 86 114
Gaudoin R, Foulkes W M C and Rajagopal G 2008 , J. Phys.: Condens. Matter 14 8787
Li J P, Dong S L, Meng S H, Luo X G and Zhang Y M 2010 Front. Mater. Sci. China 4 245
Suetin D V, Annikov V V, Shein I R and Ivanovskii A L 2009 Phys. Status Solidi B 246 1646
Chen W and Jiang J Z 2010 J. Alloys Compd. 499 243
Singh R P, Singh R K and Rajagopalan M 2011 Chalcogenide Lett. 8 325
Sinko G and Vand S N A 2002 J. Phys. Condens. Matter. 14 6989
Khenata R, Bouhemadou A, Sahnoun M, Reshak A H, Baltache H and Rabah M 2006 Comput. Math. Sci. 38 29
Haddadi K, Bouhemadou A, Louail L, Maabed S and Maouche D 2009 Phys. Lett. A 373 1777
Belomestnykh V N 2004 Tech. Phys. Lett. 30 91
Ibrahim A M 1988 Nucl. Instrum. Methods Phys. Res. B 34 135
Kleinman L 1962 Phys. Rev. 128 2614
Gupta D C and Singh S K 2012 J. Alloys Compd. 515 26
Yuan P F and Ding Z J 2008 Physica B 403 1996
Pugh S F 1954 Philos. Mag. Ser. 45 823
Bouhemadou A, Khanate, Kharoubi M, Seddik T, Reshak A H and Douri Y A 2009 Comput. Mater. Sci. 45 474
Khan I, Subhan F, Ahmad I and Ali Z 2015 J. Phys. Chem. Solids 83 75
Loughin S, French R H, Noyer L K, Ching W Y and Xu Y N 1996 J. Phys. D: Appl. Phys. 29 1740
Aliabad H A R, Hosseini S M, Kompany A, Youssefi A and Kakhki E A 2009 Phys. Status Solidi B 246 1072
Egerton R F 2009 Rep. Prog. Phys. 72 016502
Park M S, Song J H, Medvedeva J E, Kim M, Kim I G and Freeman A J 2010 Phys. Rev. B 81 155211
Ramu A T, Cassels L E, Hackman N H, Lu H, Zide J M O and Bowers J E 2010 J. Appl. Phys. 107 083707
Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
Xu B, Liang J, Li X, Sun J F and Yi L 2011 Eur. Phys. J. B 79 275
Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H et al 2011, J. Am. Chem. Soc. 133 7837
Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
Julien C M, Salah A A, Mauger A and Gendron F 2006 Ionics 12 21
Vekua T 2014 Phys. Rev. B 89 121112(R)
Kittel C 2004 Introduction to solid state physics, 8th edn (New York: Wiley)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
KHAN, A., ALI, Z., KHAN, I. et al. First-principle studies of the ternary palladates CaPd3O4 and SrPd3O4 . Bull Mater Sci 39, 1861–1870 (2016). https://doi.org/10.1007/s12034-016-1322-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12034-016-1322-8
Keywords
- Ternary palladates
- cohesive energy
- elastic properties
- ab-initio calculations
- optical properties
- thermoelectric properties.