First-principle studies of the ternary palladates CaPd3O4 and SrPd3O4

Abstract

Ternary palladates CaPd3O4 and SrPd3O4 have been studied theoretically using density functional theory approach. The calculated structural properties are consistent with the experimental findings. Mechanical properties show that these compounds are elastically stable, anisotropic and ductile in nature. The electronic properties reveal that they are narrow band gap semiconductors with band gaps 0.12 and 0.10 eV, correspondingly. Both materials are optically active in the infrared ranges of the electromagnetic spectrum. Narrow band gap semiconductors are efficient thermoelectric (TE) materials; therefore, TE properties are also studied and discussed. Furthermore, DFT and post-DFT calculations confirm the paramagnetic nature of these compounds.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. [1]

    Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152

    Article  Google Scholar 

  2. [2]

    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D et al 2006, J. Appl. Phys. 99 023708

    Article  Google Scholar 

  3. [3]

    Taniguchi T, Nagata Y, Ozawa T C, Sato M, Noro Y, Uchida T and Samata H 2004 J. Alloys Compd. 373 67

    Article  Google Scholar 

  4. [4]

    Ozawa T C, Matsushita A, Hidaka Y, Taniguchi T, Mizusaki S, Nagata Y et al 2008, J. Alloys Compd. 448 77

    Article  Google Scholar 

  5. [5]

    Hase I and Nishihara Y 2000 Phys. Rev. B 62 13426

    Article  Google Scholar 

  6. [6]

    Cahen D, Ibers J A and Shannoni R D 1972 Inorg. Chem. 11 2311

    Article  Google Scholar 

  7. [7]

    Ichikawa S and Terasaki I 2003 Phys. Rev. B 68 233101

    Article  Google Scholar 

  8. [8]

    Smallwood P L, Smith M D and Loye H C Z 2000 J. Cryst. Growth 216 299

    Article  Google Scholar 

  9. [9]

    Wnuk R C, Touw T R and Post B 1964 J. Res. Dev. 8 185

    Google Scholar 

  10. [10]

    Itoh K and Tsuda N 1999 Solid State Commun. 109 715

    Article  Google Scholar 

  11. [11]

    Wang Y, Walker D, Chen B H and Scott B A 1999 J. Alloys Compd. 285 98

    Article  Google Scholar 

  12. [12]

    Muller O and Roy R 1971 Adv. Chem. 98 28

    Article  Google Scholar 

  13. [13]

    Singh D 1994 Plane wave pseudo-potential and LAPW method (Bosten, Dortrecht, London: Kluwer Academic Publishers)

    Google Scholar 

  14. [14]

    Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2014 WIEN2k: an augmented plane waves plus local orbitals program for calculating crystal properties, WIEN2k 14.2 (Vienna, Austria: Institute of Physical and Theoretical Chemistry, Vienna University of Technology)

    Google Scholar 

  15. [15]

    Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533

    Article  Google Scholar 

  16. [16]

    Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  Google Scholar 

  17. [17]

    Koller D, Tran F and Blaha P 2012 Phys. Rev. B 85 155109

    Article  Google Scholar 

  18. [18]

    Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929

    Article  Google Scholar 

  19. [19]

    Kervan N 2012 J. Magn. Magn. Mater. 324 4114

    Article  Google Scholar 

  20. [20]

    Jamal M, Asadabadi S J, Ahmad I and Aliabad H A R 2014 Comput. Mater. Sci. 95 592

    Article  Google Scholar 

  21. [21]

    Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67

    Article  Google Scholar 

  22. [22]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244

    Article  Google Scholar 

  23. [23]

    Samata H, Tanaka S, Mizusaki S, Nagata Y, Ozawa T C, Sato A and Kosuda K 2012 J. Crystallization Process Technol. 2 16

    Article  Google Scholar 

  24. [24]

    Ali Z, Abdul Sattar A, Asadabadi S J and Ahmad I 2015 , J. Phys. Chem. Solids 86 114

    Article  Google Scholar 

  25. [25]

    Gaudoin R, Foulkes W M C and Rajagopal G 2008 , J. Phys.: Condens. Matter 14 8787

    Google Scholar 

  26. [26]

    Li J P, Dong S L, Meng S H, Luo X G and Zhang Y M 2010 Front. Mater. Sci. China 4 245

    Article  Google Scholar 

  27. [27]

    Suetin D V, Annikov V V, Shein I R and Ivanovskii A L 2009 Phys. Status Solidi B 246 1646

    Article  Google Scholar 

  28. [28]

    Chen W and Jiang J Z 2010 J. Alloys Compd. 499 243

    Article  Google Scholar 

  29. [29]

    Singh R P, Singh R K and Rajagopalan M 2011 Chalcogenide Lett. 8 325

    Google Scholar 

  30. [30]

    Sinko G and Vand S N A 2002 J. Phys. Condens. Matter. 14 6989

    Article  Google Scholar 

  31. [31]

    Khenata R, Bouhemadou A, Sahnoun M, Reshak A H, Baltache H and Rabah M 2006 Comput. Math. Sci. 38 29

    Article  Google Scholar 

  32. [32]

    Haddadi K, Bouhemadou A, Louail L, Maabed S and Maouche D 2009 Phys. Lett. A 373 1777

    Article  Google Scholar 

  33. [33]

    Belomestnykh V N 2004 Tech. Phys. Lett. 30 91

    Article  Google Scholar 

  34. [34]

    Ibrahim A M 1988 Nucl. Instrum. Methods Phys. Res. B 34 135

    Article  Google Scholar 

  35. [35]

    Kleinman L 1962 Phys. Rev. 128 2614

    Article  Google Scholar 

  36. [36]

    Gupta D C and Singh S K 2012 J. Alloys Compd. 515 26

    Article  Google Scholar 

  37. [37]

    Yuan P F and Ding Z J 2008 Physica B 403 1996

    Article  Google Scholar 

  38. [38]

    Pugh S F 1954 Philos. Mag. Ser. 45 823

    Article  Google Scholar 

  39. [39]

    Bouhemadou A, Khanate, Kharoubi M, Seddik T, Reshak A H and Douri Y A 2009 Comput. Mater. Sci. 45 474

    Article  Google Scholar 

  40. [40]

    Khan I, Subhan F, Ahmad I and Ali Z 2015 J. Phys. Chem. Solids 83 75

    Article  Google Scholar 

  41. [41]

    Loughin S, French R H, Noyer L K, Ching W Y and Xu Y N 1996 J. Phys. D: Appl. Phys. 29 1740

    Article  Google Scholar 

  42. [42]

    Aliabad H A R, Hosseini S M, Kompany A, Youssefi A and Kakhki E A 2009 Phys. Status Solidi B 246 1072

    Article  Google Scholar 

  43. [43]

    Egerton R F 2009 Rep. Prog. Phys. 72 016502

    Article  Google Scholar 

  44. [44]

    Park M S, Song J H, Medvedeva J E, Kim M, Kim I G and Freeman A J 2010 Phys. Rev. B 81 155211

    Article  Google Scholar 

  45. [45]

    Ramu A T, Cassels L E, Hackman N H, Lu H, Zide J M O and Bowers J E 2010 J. Appl. Phys. 107 083707

    Article  Google Scholar 

  46. [46]

    Sales B C, Mandrus D and Williams R K 1996 Science 272 1325

    Article  Google Scholar 

  47. [47]

    Xu B, Liang J, Li X, Sun J F and Yi L 2011 Eur. Phys. J. B 79 275

    Article  Google Scholar 

  48. [48]

    Snyder G J and Toberer E S 2008 Nat. Mater. 7 105

    Article  Google Scholar 

  49. [49]

    Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H et al 2011, J. Am. Chem. Soc. 133 7837

    Article  Google Scholar 

  50. [50]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63

    Article  Google Scholar 

  51. [51]

    Julien C M, Salah A A, Mauger A and Gendron F 2006 Ionics 12 21

    Article  Google Scholar 

  52. [52]

    Vekua T 2014 Phys. Rev. B 89 121112(R)

    Article  Google Scholar 

  53. [53]

    Kittel C 2004 Introduction to solid state physics, 8th edn (New York: Wiley)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to ZAHID ALI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

KHAN, A., ALI, Z., KHAN, I. et al. First-principle studies of the ternary palladates CaPd3O4 and SrPd3O4 . Bull Mater Sci 39, 1861–1870 (2016). https://doi.org/10.1007/s12034-016-1322-8

Download citation

Keywords

  • Ternary palladates
  • cohesive energy
  • elastic properties
  • ab-initio calculations
  • optical properties
  • thermoelectric properties.