Bulletin of Materials Science

, Volume 39, Issue 7, pp 1861–1870 | Cite as

First-principle studies of the ternary palladates CaPd3O4 and SrPd3O4

  • AMIN KHAN
  • ZAHID ALI
  • IMAD KHAN
  • SAEID JALALI ASADABADI
  • IFTIKHAR AHMAD
Article

Abstract

Ternary palladates CaPd3O4 and SrPd3O4 have been studied theoretically using density functional theory approach. The calculated structural properties are consistent with the experimental findings. Mechanical properties show that these compounds are elastically stable, anisotropic and ductile in nature. The electronic properties reveal that they are narrow band gap semiconductors with band gaps 0.12 and 0.10 eV, correspondingly. Both materials are optically active in the infrared ranges of the electromagnetic spectrum. Narrow band gap semiconductors are efficient thermoelectric (TE) materials; therefore, TE properties are also studied and discussed. Furthermore, DFT and post-DFT calculations confirm the paramagnetic nature of these compounds.

Keywords

Ternary palladates cohesive energy elastic properties ab-initio calculations optical properties thermoelectric properties. 

References

  1. [1]
    Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152CrossRefGoogle Scholar
  2. [2]
    Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D et al 2006, J. Appl. Phys. 99 023708CrossRefGoogle Scholar
  3. [3]
    Taniguchi T, Nagata Y, Ozawa T C, Sato M, Noro Y, Uchida T and Samata H 2004 J. Alloys Compd. 373 67CrossRefGoogle Scholar
  4. [4]
    Ozawa T C, Matsushita A, Hidaka Y, Taniguchi T, Mizusaki S, Nagata Y et al 2008, J. Alloys Compd. 448 77CrossRefGoogle Scholar
  5. [5]
    Hase I and Nishihara Y 2000 Phys. Rev. B 62 13426CrossRefGoogle Scholar
  6. [6]
    Cahen D, Ibers J A and Shannoni R D 1972 Inorg. Chem. 11 2311CrossRefGoogle Scholar
  7. [7]
    Ichikawa S and Terasaki I 2003 Phys. Rev. B 68 233101CrossRefGoogle Scholar
  8. [8]
    Smallwood P L, Smith M D and Loye H C Z 2000 J. Cryst. Growth 216 299CrossRefGoogle Scholar
  9. [9]
    Wnuk R C, Touw T R and Post B 1964 J. Res. Dev. 8 185Google Scholar
  10. [10]
    Itoh K and Tsuda N 1999 Solid State Commun. 109 715CrossRefGoogle Scholar
  11. [11]
    Wang Y, Walker D, Chen B H and Scott B A 1999 J. Alloys Compd. 285 98CrossRefGoogle Scholar
  12. [12]
    Muller O and Roy R 1971 Adv. Chem. 98 28CrossRefGoogle Scholar
  13. [13]
    Singh D 1994 Plane wave pseudo-potential and LAPW method (Bosten, Dortrecht, London: Kluwer Academic Publishers)CrossRefGoogle Scholar
  14. [14]
    Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2014 WIEN2k: an augmented plane waves plus local orbitals program for calculating crystal properties, WIEN2k 14.2 (Vienna, Austria: Institute of Physical and Theoretical Chemistry, Vienna University of Technology)Google Scholar
  15. [15]
    Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533CrossRefGoogle Scholar
  16. [16]
    Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865CrossRefGoogle Scholar
  17. [17]
    Koller D, Tran F and Blaha P 2012 Phys. Rev. B 85 155109CrossRefGoogle Scholar
  18. [18]
    Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929CrossRefGoogle Scholar
  19. [19]
    Kervan N 2012 J. Magn. Magn. Mater. 324 4114CrossRefGoogle Scholar
  20. [20]
    Jamal M, Asadabadi S J, Ahmad I and Aliabad H A R 2014 Comput. Mater. Sci. 95 592CrossRefGoogle Scholar
  21. [21]
    Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67CrossRefGoogle Scholar
  22. [22]
    Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244CrossRefGoogle Scholar
  23. [23]
    Samata H, Tanaka S, Mizusaki S, Nagata Y, Ozawa T C, Sato A and Kosuda K 2012 J. Crystallization Process Technol. 2 16CrossRefGoogle Scholar
  24. [24]
    Ali Z, Abdul Sattar A, Asadabadi S J and Ahmad I 2015 , J. Phys. Chem. Solids 86 114CrossRefGoogle Scholar
  25. [25]
    Gaudoin R, Foulkes W M C and Rajagopal G 2008 , J. Phys.: Condens. Matter 14 8787Google Scholar
  26. [26]
    Li J P, Dong S L, Meng S H, Luo X G and Zhang Y M 2010 Front. Mater. Sci. China 4 245CrossRefGoogle Scholar
  27. [27]
    Suetin D V, Annikov V V, Shein I R and Ivanovskii A L 2009 Phys. Status Solidi B 246 1646CrossRefGoogle Scholar
  28. [28]
    Chen W and Jiang J Z 2010 J. Alloys Compd. 499 243CrossRefGoogle Scholar
  29. [29]
    Singh R P, Singh R K and Rajagopalan M 2011 Chalcogenide Lett. 8 325Google Scholar
  30. [30]
    Sinko G and Vand S N A 2002 J. Phys. Condens. Matter. 14 6989CrossRefGoogle Scholar
  31. [31]
    Khenata R, Bouhemadou A, Sahnoun M, Reshak A H, Baltache H and Rabah M 2006 Comput. Math. Sci. 38 29CrossRefGoogle Scholar
  32. [32]
    Haddadi K, Bouhemadou A, Louail L, Maabed S and Maouche D 2009 Phys. Lett. A 373 1777CrossRefGoogle Scholar
  33. [33]
    Belomestnykh V N 2004 Tech. Phys. Lett. 30 91CrossRefGoogle Scholar
  34. [34]
    Ibrahim A M 1988 Nucl. Instrum. Methods Phys. Res. B 34 135CrossRefGoogle Scholar
  35. [35]
    Kleinman L 1962 Phys. Rev. 128 2614CrossRefGoogle Scholar
  36. [36]
    Gupta D C and Singh S K 2012 J. Alloys Compd. 515 26CrossRefGoogle Scholar
  37. [37]
    Yuan P F and Ding Z J 2008 Physica B 403 1996CrossRefGoogle Scholar
  38. [38]
    Pugh S F 1954 Philos. Mag. Ser. 45 823CrossRefGoogle Scholar
  39. [39]
    Bouhemadou A, Khanate, Kharoubi M, Seddik T, Reshak A H and Douri Y A 2009 Comput. Mater. Sci. 45 474CrossRefGoogle Scholar
  40. [40]
    Khan I, Subhan F, Ahmad I and Ali Z 2015 J. Phys. Chem. Solids 83 75CrossRefGoogle Scholar
  41. [41]
    Loughin S, French R H, Noyer L K, Ching W Y and Xu Y N 1996 J. Phys. D: Appl. Phys. 29 1740CrossRefGoogle Scholar
  42. [42]
    Aliabad H A R, Hosseini S M, Kompany A, Youssefi A and Kakhki E A 2009 Phys. Status Solidi B 246 1072CrossRefGoogle Scholar
  43. [43]
    Egerton R F 2009 Rep. Prog. Phys. 72 016502CrossRefGoogle Scholar
  44. [44]
    Park M S, Song J H, Medvedeva J E, Kim M, Kim I G and Freeman A J 2010 Phys. Rev. B 81 155211CrossRefGoogle Scholar
  45. [45]
    Ramu A T, Cassels L E, Hackman N H, Lu H, Zide J M O and Bowers J E 2010 J. Appl. Phys. 107 083707CrossRefGoogle Scholar
  46. [46]
    Sales B C, Mandrus D and Williams R K 1996 Science 272 1325CrossRefGoogle Scholar
  47. [47]
    Xu B, Liang J, Li X, Sun J F and Yi L 2011 Eur. Phys. J. B 79 275CrossRefGoogle Scholar
  48. [48]
    Snyder G J and Toberer E S 2008 Nat. Mater. 7 105CrossRefGoogle Scholar
  49. [49]
    Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H et al 2011, J. Am. Chem. Soc. 133 7837CrossRefGoogle Scholar
  50. [50]
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63CrossRefGoogle Scholar
  51. [51]
    Julien C M, Salah A A, Mauger A and Gendron F 2006 Ionics 12 21CrossRefGoogle Scholar
  52. [52]
    Vekua T 2014 Phys. Rev. B 89 121112(R)CrossRefGoogle Scholar
  53. [53]
    Kittel C 2004 Introduction to solid state physics, 8th edn (New York: Wiley)Google Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  • AMIN KHAN
    • 1
    • 2
  • ZAHID ALI
    • 1
    • 2
  • IMAD KHAN
    • 1
    • 2
  • SAEID JALALI ASADABADI
    • 3
  • IFTIKHAR AHMAD
    • 1
    • 2
  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdaraPakistan
  3. 3.Department of Physics, Faculty of ScienceUniversity of IsfahanIsfahanIran

Personalised recommendations