Skip to main content
Log in

Theoretical study of built-in-polarization effect on relaxation time and mean free path of phonons in Al x Ga1−x N alloy

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this article we have investigated theoretically the effect of built-in-polarization field on various phonon scattering mechanisms in Al x Ga 1−x N alloy. The built-in-polarization field of Al x Ga 1−x N modifies the elastic constant, group velocity of phonons and Debye temperature. As a result, various phonon scattering mechanisms are changed. Important phonon scattering mechanisms such as normal scattering, Umklapp scattering, point defect scattering, dislocation scattering and phonon–electron scattering processes have been considered in the computation. The combined relaxation time due to above-mentioned scattering mechanisms has also been computed as a function of phonon frequency for various Al compositions at room temperature. It is found that combined relaxation time is enhanced due to built-in-polarization effect and makes phonon mean free path longer, which is required for higher optical, electrical and thermal transport processes. The result can be used to determine the effect of built-in-polarization field on optical and thermal properties of Al x Ga 1−x N and will be useful, particularly, for improvement of thermoelectric performance of Al x Ga 1−x N alloy through polarization engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Morkoc H 2013 Nitride semiconductor devices (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.)

    Book  Google Scholar 

  2. Lopuszy M and Majewski J A 2012 J. Appl. Phys. 111 033502

    Article  Google Scholar 

  3. Morkoc H 2008 Handbook of nitride semiconductors and devices (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.)

    Book  Google Scholar 

  4. Piprek J 2007 Nitride semiconductor devices: principles and simulation (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.)

    Book  Google Scholar 

  5. Schubert E F 2006 Light emitting diodes (New York: Cambridge University Press)

    Book  Google Scholar 

  6. Sztein A, Bowers J E, DenBaars S P and Nakamura S 2012 Appl. Phys. Lett. 112 083716

    Google Scholar 

  7. Sztein A, Bowers J E, DenBaars S P and Nakamura S 2013 Appl. Phys. Lett. 113 183707

    Google Scholar 

  8. Sztein A, Bowers J E, DenBaars S P and Nakamura S 2014 Appl. Phys. Lett. 104 042106

    Article  Google Scholar 

  9. Tanaka S, Matsunami M and Kimura S 2013 Sci. Rep. 3 3031

    Google Scholar 

  10. Alshaikhi A, Barman S and Srivastava G P 2010 Phys. Rev. B 81 19530

    Article  Google Scholar 

  11. Wood C and Jena D 2000 Polarization effects in semiconductors: from ab initio theory to device applications (New York: Springer Science + Business Media) p 170

    Google Scholar 

  12. Ambacher O, Smart J, Shealy J R, Weimann N, Chu K, Murphy M, Scaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    Article  Google Scholar 

  13. Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N, Chu K, Murphy M, Scaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 2000 J. Appl. Phys. 87 334

    Article  Google Scholar 

  14. Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399

    Google Scholar 

  15. Bernardini F and Fiorentini V 2000 Appl. Surf. Sci. 166 23

    Article  Google Scholar 

  16. Bernardini F, Fiorentini V and Ambacher O 2002 Appl. Phys. Lett. 80 1204

    Article  Google Scholar 

  17. Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 08520

    Article  Google Scholar 

  18. Yan J, Zhang Y, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802

    Article  Google Scholar 

  19. Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532

    Article  Google Scholar 

  20. Hwang E H and Das Sarma S 2008 Phys. Rev. B 77 115449

    Article  Google Scholar 

  21. Siegel D A, Hwang C, Fedorov A V and Lanzara A 2012 New J. Phys. 14 95006

    Article  Google Scholar 

  22. Verzellesi G, Saguatti D, Meneghini M, Bertazzi M, Goano M, Meneghesso G and Zanoni E 2013 J. Appl. Phys. 114 071101

    Article  Google Scholar 

  23. Liu W and Balandin A A 2005 J. Appl. Phys. 97 123705

    Article  Google Scholar 

  24. Sahoo B K, Sahoo S K and Sahoo S 2013 J. Appl. Phys. 114 163501

    Article  Google Scholar 

  25. Pansari A, Gedam V and Sahoo B K 2015 Physica B 456 66

    Article  Google Scholar 

  26. Zou J and Balandin A A 2001 J. Appl. Phys. 89 2932

    Article  Google Scholar 

  27. Kotchetkov D, Zou J, Balandin A A, Florescu D I and Pollak F H 2001 Appl. Phys. Lett. 79 43165

    Article  Google Scholar 

  28. Klemen P G 1997 In: Chemistry and physics of nanostructures and related non-equilibrium materials E Ma, B Fultz, R Shall, J Morral and P Nash (eds) (Warrendale: Minerals, Metals, and Materials Society)

  29. Florescu D I, Asnin V M, Pollak F H, Molnar R J and Wood C E C 2000 J. Appl. Phys. 88 329

    Article  Google Scholar 

  30. Liu W and Balandin A A 2005 J. Appl. Phys. 97 073710

    Article  Google Scholar 

  31. Gedam V, Pansari A, Sinha A K and Sahoo B K 2015 J. Phys. Chem. Solids 78 59

    Article  Google Scholar 

  32. Gangwani P, Pandey S, Haldar S, Gupta M and Gupta R S 2007 Solid-State Electron. 51 130

    Article  Google Scholar 

Download references

Acknowledgement

We thank Chhattisgarh Council of Science and Technology, Raipur, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A PANSARI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SAHOO, B.K., PANSARI, A. Theoretical study of built-in-polarization effect on relaxation time and mean free path of phonons in Al x Ga1−x N alloy. Bull Mater Sci 39, 1835–1841 (2016). https://doi.org/10.1007/s12034-016-1319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1319-3

Keywords

Navigation